GLUTs are vesicle transporters that are the rate-limiting steps for bringing glucose into a cell, and GLUT4 is the most active variant.[327] Agents that reduce blood glucose (insulin or AMPK) are known to act via mobilizing GLUT4, and increased GLUT4 expression and activity is indicative of a greater ability to bring glucose into a cell, while reducing it impairs glucose uptake.[328] Rat studies have confirmed that creatine feeding increases muscular GLUT4 expression associated with increased insulin-stimulated glucose uptake.[329]

Despite the popularity of creatine among young people, there has been very little research conducted in children under age 18. Of those studies, a few have suggested a positive effect but the overall evidence is inconclusive. In one study, teenage swimmers performed better after taking creatine; in another study, it helped high school soccer players sprint, dribble, and jump more effectively.
Without supplementation, approximately 14.6mmol (2g) of creatinine, creatine’s urinary metabolite, is lost on a daily basis in a standard 70kg male ages 20-39. The value is slightly lower in females and the elderly due to a presence of less muscle mass.[35] This amount is considered necessary to obtain in either food or supplemental form to avoid creatine deficiency. Requirements may be increased in people with higher than normal lean mass.[35][198] Creatine excretion rates on a daily basis are correlated with muscle mass, and the value of 2g a day is derived from the aforementioned male population with about 120g creatine storage capacity.[35] Specifically, the rate of daily creatine losses is about 1.6%[199]-1.7%,[25] and mean losses for women are approximately 80% that of men due to less average lean mass.[35] For weight-matched elderly men (70kg, 70-79 years of age) the rate of loss of 7.8mmol/day,[49] or about half (53%) that of younger men.
It's woooooorkkkkkiiiinnnngggg!!! I've been working out without creatine for over a year and a half now and have been missing that extra boost at the end of a set of reps. Not anymore! Started to feel the creatine help out in my 4th workout since using this stuff. It's good, real good. Creatine is one of those only supplements that have actually been proven to increase strength and bursts of endurance at the end of a set, and it's that one thing that can turn a regular workout into something that you're proud of. Just buy it, it works, you won't be disappointed. Use 2 of their servings sizes though, you need 5mg not 2.5. No spoon in bag, you'll need a measuring cup. Mixes effortlessly in juice.
Bodybuilders spend years and years of their lives focused on perfecting the human body through proper training and nutrition. You, on the other hand, might not have an interest in the sport of bodybuilding, but do want to know the secrets to six-pack abs, a wide back, and rounded shoulders. And what better place to score the tricks of the trade than from 3-time Mr. Olympia Phil Heath. 
It’s true—your genes can play a role when it comes to building muscle. In general, there are two types of muscle fibers: Type I, which are slow twitch, and Type II, which are fast twitch. Depending on which you have more of, you may have an easier or harder time gaining muscle. “Fast twitch muscle fibers are two times as thick as slow twitch muscle fibers, lending to the overall thickness of the muscle without any activity,” explains Lovitt. “Those people with a genetic predisposition of a high percentage of these fibers can increase muscle size very easily while the people with a higher percentage of slow twitch muscle fibers have to work really hard to put on mass.” It’s the reason why a world-class sprinter genetically has more fast twitch muscle fibers than a world-class marathoner—it comes down to what we’re born with.
Aim to eat roughly 250 to 500 extra calories per day. To make sure that any weight gained is from muscle, Fitzgerald recommends that the bulk of those calories come from protein. In a 2014 Pennington Biomedical Research Center study, people who ate a high-calorie diet rich in protein stored about 45 percent of those calories as muscle, while those following a low-protein diet with the same number of calories stored 95 percent of those calories as fat.
The basic principles of weight training are essentially identical to those of strength training, and involve a manipulation of the number of repetitions (reps), sets, tempo, exercise types, and weight moved to cause desired increases in strength, endurance, and size. The specific combinations of reps, sets, exercises, and weights depends on the aims of the individual performing the exercise.

In addition to being potentially harmful, some have argued that there is little evidence to indicate any benefit to using bodybuilding protein or amino acid supplements. "In view of the lack of compelling evidence to the contrary, no additional dietary protein is suggested for healthy adults undertaking resistance or endurance exercise".[18] In dispute of this, one more recent meta-analysis concluded that for athletes participating in resistance exercise training and consuming protein supplements for an average of 13 weeks, total protein intake up to 1.6 g per kg body weight per day would result in an increase in strength and fat-free mass, i.e. muscle, but that higher intakes would not further contribute. The muscle mass increase was statistically significant but modest - averaging 0.3 for all trials and 1.0 to 2.0 kg, for protein intake ≥ 1.6 g/kg/day.[3]
What kind of exercises? Work all major muscle groups, starting with the larger muscles. Always include exercises for opposing muscles: for example, work the biceps and triceps of your arms, and the quadriceps and hamstrings of your thighs. Avoid above-the-shoulder exercises if you have arthritis in your upper body, and talk to your doctor before using leg press machines if you have arthritis in your knees or hips.
If you’re not lifting super-heavy weights, doing high-intensity workouts, or eating a mainly vegan or vegetarian diet, your body probably makes as much creatine as it needs. “Creatine is naturally found in animal-based products,” says Bates, “so your body can make plenty of creatine as long as you have a balanced diet that includes animal-based products.” Protein sources like beef, chicken, pork, and fish help your body produce the creatine it needs — it varies depending on the source, but, in general, a 3-ounce serving of meat will have about 0.4 grams (g) of creatine, Bates says. (6) 

Studies that use a dosage range typical of creatine supplementation (in the range of 5g a day following an acute loading period) note increases to total body water of 6.2% (3.74lbs) over 9 weeks and[608] 1.1kg over 42 days.[609] Interestingly, some studies comparing creatine paired with training against training itself fail to find a significant difference in percentage of water gained (which is inherently to activity) with standard oral doses of creatine[609][607][610] (although low dose creatine supplementation of 0.03g/kg or 2.3g daily doesn’t appear to increase water retention[611]) despite more overall water weight being gained, due to an equal gain of dry mass in muscles. One study has quantified the percentage increase in mass of muscle cells to be 55% water, suggesting the two groups are fairly equal.[609]
Homocyteine (normal serum range of 5-14µM) is known to adversely affect motor control in genetically susceptible people when their levels exceed 500µM, which is usually associated with genetically induced deficiencies of B12.[360][361] In these particular instances (assessed by rats fed homocysteine to increase serum levels to such a high level[362][363]) it appears that administration of 50mg/kg creatine (injections) to these rats can protect dysfunction in muscle metabolism (pyruvate kinase activity, Krebs cycle intermediates, and muscle cell viability) induced by homocysteine.[363]

In today's extra-large society, we tend to focus on the admirable guys who train hard and switch up their diet to transform their bodies by losing weight. We highlight their quests to lead healthier lives every chance we get — but there's another side of the wellness scale that can be just as difficult, depending on your body's makeup: Gaining mass and muscle.

A big clue is digestion. He does occasional cleanses. (“There’s no planes that week,” he said. “And no judgment at home.”) The slightest change in a muscle, just a stripe in a striation, is noticed. And while Heath does most workouts alone, he has a trainer, Hany Rambod, who is based in California. They see each other about once a month. In between, Heath sends photos and receives workout and dietary advice in return.
Unfortunately, some people are intolerant to milk, due to the casein (one of the proteins in dairy) and have trouble digesting the sugar in milk, called lactose. If this is the case, stick to whey-only protein shakes. Maximuscle uses Biomax Whey True Protein - a unique blend of whey proteins including whey protein concentrate, isolate and hydrolysate, which are lower in lactose. Biomax Whey True Protein is used in a number of Maximuscle products (Promax and Cyclone).
The United States Army is about to undertake a dramatic and unprecedented overhaul to the way it tests, and promotes, military fitness. The man who headed the research into the new standards talks with us about how and why, as well as the future of Army nutrition and how the Army plans to circulate 80,000 kettlebells to bases around the globe. January 22, 2019 • 43 min read

Although creatine supplementation has been shown to be more effective on predominantly anaerobic intermittent exercise, there is some evidence of its positive effects on endurance activities. Branch [28] highlights that endurance activities lasting more than 150s rely on oxidative phosphorylation as primary energy system supplier. From this meta analysis [28], it would appear that the ergogenic potential for creatine supplementation on predominantly aerobic endurance exercise diminishes as the duration of the activity increases over 150s. However it is suggested that creatine supplementation may cause a change in substrate utilization during aerobic activity possibly leading to an increase in steady state endurance performance.

Gordon, P. H., Cheung, Y. K., Levin, B., Andrews, H., Doorish, C., Macarthur, R. B., Montes, J., Bednarz, K., Florence, J., Rowin, J., Boylan, K., Mozaffar, T., Tandan, R., Mitsumoto, H., Kelvin, E. A., Chapin, J., Bedlack, R., Rivner, M., McCluskey, L. F., Pestronk, A., Graves, M., Sorenson, E. J., Barohn, R. J., Belsh, J. M., Lou, J. S., Levine, T., Saperstein, D., Miller, R. G., and Scelsa, S. N. A novel, efficient, randomized selection trial comparing combinations of drug therapy for ALS. Amyotroph.Lateral.Scler. 2008;9(4):212-222. View abstract.
“Don't get set into one form, adapt it and build your own, and let it grow. Be like water. Empty your mind, be formless, shapeless — like water. Now you put water in a cup, it becomes the cup; You put water into a bottle it becomes the bottle; You put it in a teapot it becomes the teapot. Now water can flow or it can crash. Be water, my friend.” Bruce Lee

In regard to practical interventions, concurrent glycogen loading has been noted to increase creatine stores by 37-46% regardless of whether the tissue was exercised prior to loading phase.[176] It is important to note, however, that creatine levels in response to the creatine loading protocol were compared in one glycogen-depleted leg to the contralateral control leg, which was not exercised.[176] This does not rule out a possible systemic exercise-driven increase in creatine uptake, and the increase in creatine noted above[176] was larger than typically seen with a loading protocol (usually in the 20-25% range). Consistent with an exercise-effect, others have reported that exercise itself increases creatine uptake into muscle, reporting 68% greater creatine uptake in an exercised limb, relative to 14% without exercise.[153]
Another study demonstrated that females receiving 4 days of high-dose creatine intake (20 g/day) followed by low-dose creatine intake (5 g/day) during 10 weeks of resistance training (3hours/week) increased muscle PCr concentrations by 6%. Also, maximal strength of the muscle groups trained increased by 20-25%, maximal intermittent exercise capacity of the arm flexors increased by 10-25% and fat-free mass increased by 60% [11].