Kerksick, C. M., Wilborn, C. D., Campbell, W. I., Harvey, T. M., Marcello, B. M., Roberts, M. D., Parker, A. G., Byars, A. G., Greenwood, L. D., Almada, A. L., Kreider, R. B., and Greenwood, M. The effects of creatine monohydrate supplementation with and without D-pinitol on resistance training adaptations. J.Strength.Cond.Res. 2009;23:2673-2682. View abstract.
You’ll Feel Better: Not only will you find yourself with more energy and confidence, less stress and anxiety, and a better overall mood, but you’ll actually begin to think better (resistance training has been proven to help increase cognitive function). And while training too close to bedtime can be a bad idea, exercising earlier in the day has been proven to help prevent sleep apnea and insomnia. I even improved my posture – when I started lifting, I was 5’4”.  Now I’m 5’5.5”.

In a mouse model of allergin-induced asthma, where mice were sensitized by ovalbumin for three weeks and then given 500mg/kg creatine, supplementation induced an increase in asthmatic hyperresponsiveness to low but not high doses of methacholine.[440] This hyperresponsiveness was associated with increased eosinophil and neutrophil infiltration into the lungs, and an increase in Th2 cell cytokines (IL-4 and IL-5) alongside an increase in IGF-1,[440] which is known to influence this process.[441] Interestingly, there was a nonsignificant increase in responsiveness in mice not sensitized to ovalbumin.[440]
In regard to practical interventions, concurrent glycogen loading has been noted to increase creatine stores by 37-46% regardless of whether the tissue was exercised prior to loading phase.[176] It is important to note, however, that creatine levels in response to the creatine loading protocol were compared in one glycogen-depleted leg to the contralateral control leg, which was not exercised.[176] This does not rule out a possible systemic exercise-driven increase in creatine uptake, and the increase in creatine noted above[176] was larger than typically seen with a loading protocol (usually in the 20-25% range). Consistent with an exercise-effect, others have reported that exercise itself increases creatine uptake into muscle, reporting 68% greater creatine uptake in an exercised limb, relative to 14% without exercise.[153]
“There is a lot of mixed research on creatine’s ability to improve muscle strength,” the government website says. “However, analyses of this research show that creatine seems to modestly improve upper body strength and lower body strength in both younger and older adults.” Creatine has also been shown to improve athletes’ performance in rowing, soccer, and jumping height.
Wilkinson, S. B., Tarnopolsky, M. A., MacDonald, M. J., MacDonald, J. R., Armstrong, D., & Phillips, S. M. (2007). Consumption of fluid skim milk promotes greater muscle protein accretion after resistance exercise than does consumption of an isonitrogenous and isoenergetic soy-protein beverage. The American Journal of Clinical Nutrition, 85(4), 1031-1040.
In otherwise healthy adults subject to leg immobilization for two weeks while taking 20g creatine daily during immobilization and then 5g daily during eight weeks of rehabilitation, it was noted that the creatine group failed to reduce atrophy during the immobilization (10% reduction in cross sectional area and 22-25% reduction in force output) despite preventing a decrease in phosphocreatine, yet experienced a significantly enhanced rate of regrowth and power recovery.[358] A similarly structured and dosed study has also noted greater expression of skeletal muscle, GLUT4 expression, and a 12% increase in muscle phosphocreatine content.[330]

There is a nuclear receptor known as TIS1 (orphan receptor, since there are no known endogeouns targets at this time) which positively influences transcription of new creatine transporters[171] and, in C2C12 myotubes, seems to be responsive to cAMP or adenyl cyclase stimulation from forskolin (from Coleus Forskohlii) with peak activation at 20µM.[171][172] 

High extracellular creatine concentrations induce the expression of a factor that inhibits the creatine transporter (CrT). To date, neither the identity of nor mechanism for this putative CrT-suppressing factor has come to light. Future studies that are able to identify this creatine transport-suppressing factor and how it works may provide valuable insight into possible supplementation strategies that might be used to increase creatine uptake into muscle cells.
Creatine is produced endogenously at an amount of about 1 g/d. Synthesis predominately occurs in the liver, kidneys, and to a lesser extent in the pancreas. The remainder of the creatine available to the body is obtained through the diet at about 1 g/d for an omnivorous diet. 95% of the bodies creatine stores are found in the skeletal muscle and the remaining 5% is distributed in the brain, liver, kidney, and testes [1]. As creatine is predominately present in the diet from meats, vegetarians have lower resting creatine concentrations [2].
This amino acid is actually produced by your body and so is considered a non-essential amino acid. However, in addition to taking it in supplement form, beta-alanine is also found in protein-heavy foods like meat and fish (9). This amino acid has been linked to performance enhancement outcomes, especially for weightlifters. Studies show increased performance when taking this supplement.
The biggest mistake among young would-be bodybuilders is overdoing it, followed by not learning the proper techniques. Take those breaks and follow the correct form, or you'll give your body stress and injuries instead of muscle. Also make sure you're getting a large but balanced diet. Teens going through growth spurts need lots of food, especially when they're working out.
That pump is tangible, real-time biofeedback to let you know that blood is flowing to your muscle cells, beginning a chain of events that stimulates protein synthesis. Maybe that'’s why it's easy to overlook how important good nutrition is in the mass-building equation. When you choose to eat, say, chicken instead of ice cream, there'’s no immediate muscle gratification -- no pump to keep you motivated.
So it was popular then, but is it effective now? Just because something is popular doesn’t mean it works. In the case of creatine supplementation, however, you can be confident that increased muscle strength and less fatigue is possible. All thanks to a critical chemical reaction taking place in your muscle cells. Read on and learn how creatine works and why it lives up to that nostalgic ‘90s hype.
Creatine is a hydrophilic polar molecule that consists of a negatively charged carboxyl group and a positively charged functional group [64]. The hydrophilic nature of creatine limits its bioavailability [65]. In an attempt to increase creatines bioavailability creatine has been esterified to reduce the hydrophilicity; this product is known as creatine ethyl ester. Manufacturers of creatine ethyl ester promote their product as being able to by-pass the creatine transporter due to improved sarcolemmal permeability toward creatine [65]. Spillane et al [65] analyzed the effects of a 5 days loading protocol (0.30 g/kg lean mass) followed by a 42 days maintenance phase (0.075 g/kg lean mass) of CM or ethyl ester both combined with a resistance training program in 30 novice males with no previous resistance training experience. The results of this study [65] showed that ethyl ester was not as effective as CM to enhance serum and muscle creatine stores. Furthermore creatine ethyl ester offered no additional benefit for improving body composition, muscle mass, strength, and power. This research did not support the claims of the creatine ethyl ester manufacturers.