Of course, cardio is an important part of fitness too, but the benefits of strength training are major. Strength training helps build muscle, and lean muscle is better at burning calories when the body is at rest, which is important whether you're trying to lose weight or maintain it. It also helps strengthens joints and bones, avoid injury, improve your muscular endurance, and will help you give it your all during your other workouts, whether that means setting a new PR if you're a runner or pushing (and pulling) a little harder with your legs during your favorite indoor cycling class.
A maintenance phase of 2g daily appears to technically preserve creatine content in skeletal muscle of responders either inherently or after a loading phase, but in sedentary people or those with light activity, creatine content still progressively declines (although it still higher than baseline levels after six weeks) and glycogen increases seem to normalize. This maintenance dose may be wholly insufficient for athletes, a 5g maintenance protocol may be more prudent.
Based on the limited data on performance and safety, some authors have not identified any conclusions and do not recommend its consumption in regards to creatine supplementation in children and adolescents [52,54]. Conversely, according to the view of the ISSN [5], younger athletes should consider a creatine supplement under certain conditions: puberty is past and he/she is involved in serious competitive training; the athlete is eating a well-balanced caloric adequate diet; he/she as well as the parents approve and understand the truth concerning the effects of creatine supplementation; supplement protocols are supervised by qualified professionals; recommended doses must not be exceeded; quality supplements are administered.
Our bodies store creatine in our muscles so that we have quick access to it for fast, high-intensity movements, like sprinting or powerlifting, explains Autumn Bates, a certified clinical nutritionist and sports nutritionist in private practice in Manhattan Beach, California. “It's a nonessential amino acid, meaning your body creates it and you don't need to primarily get it from food.”

Without a doubt, you can add muscle simply by eating right and lifting weights. But to truly maximize your growth potential, supplements are a requirement. Hence, we've compiled a rundown of the 11 best mass-gain supplements on which to spend your hard-earned cash. They're listed in order of priority, from the absolute most critical, can't-do-without supplements to the less crucial yet still highly effective ingredients for packing on size. The point is to help those on a tight budget decide which supplements to buy. If money is no object, then by all means knock yourself out and use them all as directed. Because after all, as far as we're concerned, you can never have too much muscle.
Creatine synthesis primarily occurs in the liver and kidneys.[2][16] On average, it is produced endogenously at an estimated rate of about 8.3 mmol or 1 gram per day in young adults.[16][17] Creatine is also obtained through the diet at a rate of about 1 gram per day from an omnivorous diet.[16][18] Most of the human body's total creatine and phosphocreatine stores are found in skeletal muscle, while the remainder is distributed in the blood, brain, and other tissues.[17][18]
Another supplement that’s ideal to take pre-workout is protein. Depending on your goals and your workout time, taking protein before your workout can help you keep your energy levels elevated while working out. Make sure you give yourself at least an hour between the time you take your protein and your workout time so that your body has time to digest.
An isolation exercise is one where the movement is restricted to one joint only. For example, the leg extension is an isolation exercise for the quadriceps. Specialized types of equipment are used to ensure that other muscle groups are only minimally involved—they just help the individual maintain a stable posture—and movement occurs only around the knee joint. Most isolation exercises involve machines rather than dumbbells and barbells (free weights), though free weights can be used when combined with special positions and joint bracing.
Perform the two workouts (Day 1 and 2) once each per week, resting at least a day between each. Perform the exercises marked with letters as a group. Do one set of A, rest, then one set of B, rest (note that some groups have an exercise “C”), and repeat until all sets are complete. Then go on to the next group. Perform three sets of 8–10 reps for each exercise. After a month, you’ll see how rewarding just a months in the gym can be.
We’re so confident that you’re going to love our supplements that we offer a 30-day guarantee. If you have any questions about any of our products, please don’t hesitate to call our friendly experts at (512) 394-7995, or feel free to email us at [email protected] The right supplements can make a tremendous difference in your workouts, so don’t wait to get started. Shop the best bodybuilding supplements at Bare Performance Nutrition now.
Your basal metabolic rate (BMR)—the calories you burn just to live—is driven by a host of factors, including your sex, genetics, and age, Tim Church, M.D., professor of preventative medicine at Pennington Biomedical Research Center at Louisiana State University, tells SELF. Research published in the medical journal PLOS ONE also shows that the size of your internal organs plays a huge role in why some people burn more calories at rest than others—in fact, the study found that 43 percent of the differences between people’s metabolic rates can be explained by organ size.
Do standard squats with a weighted bar. Place enough weight on a bar and rack so that it's a little lower than shoulder height. It should be heavy enough that doing a squat is difficult, but not impossible. If you're a beginner, this may mean using a bar without any weight to start with. Duck under the bar and stand up so that the bar rests comfortably on your trapezius muscles, just below the neck. Keep your knees slightly bent and your legs slightly wider than shoulder width. Lift the bar up off the rack and move backwards one step.
For many people in rehabilitation or with an acquired disability, such as following stroke or orthopaedic surgery, strength training for weak muscles is a key factor to optimise recovery.[35] For people with such a health condition, their strength training is likely to need to be designed by an appropriate health professional, such as a physiotherapist.
Genetic deficiencies in the creatine biosynthetic pathway lead to various severe neurological defects.[26] Clinically, there are three distinct disorders of creatine metabolism. Deficiencies in the two synthesis enzymes can cause L-arginine:glycine amidinotransferase deficiency caused by variants in GATM and guanidinoacetate methyltransferase deficiency, caused by variants in GAMT. Both biosynthetic defects are inherited in an autosomal recessive manner. A third defect, creatine transporter defect, is caused by mutations in SLC6A8 and inherited in a X-linked manner. This condition is related to the transport of creatine into the brain.[27]

Makes You Healthier: If you’re looking for a workout in which you get the biggest bang for your buck, strength training is it. Strength training increases bone density, builds a stronger heart, reduces your resting blood pressure, improves blood flow, halts muscle loss, helps control blood sugar, improves cholesterol levels, and improves your balance and coordination (turning you from this, to this).


Second, strength training has a much greater level of excess post-exercise oxygen consumption than aerobic exercise.  What does this mean?  When you finish a workout, your body needs to do a lot of work to replenish itself in order to bring itself back to a normal state (the way it was before you worked out).  This takes a lot of energy, and some studies have shown that it can boost your metabolism for up to 38 hours after you finish your workout.
In people whose kidneys don’t function optimally, supplemental creatine seems to be safe, too.[513][518][313][528] However, studies in people with suboptimal kidney function are fewer than in healthy people, and they are short-term. People with kidney dysfunction, or at risk for developing kidney dysfunction (e.g., people with diabetes, high blood pressure, or family history of kidney disease; people over sixty; and non-Hispanic blacks), might wish to forgo creatine, or otherwise take only the lowest effective dose (3 g/day)[527] after talking to their doctor.

One pilot study using 150mg/kg creatine monohydrate for a five day loading phase followed by maintenance (60mg/kg) for the remainder of the five weeks noted that supplementation was associated with fewer muscle symptoms and complaints alongside improved muscular function,[572] yet a later trial trying to replicate the obsevations using 150mg/kg daily for five weeks noted the opposite, that creatine supplementation exacerbated symptoms.[573] 


There have been a few reported renal health disorders associated with creatine supplementation [73,74]. These are isolated reports in which recommended dosages are not followed or there is a history of previous health complaints, such as renal disease or those taking nephrotoxic medication aggravated by creatine supplementation [73]. Specific studies into creatine supplementation, renal function and/or safety conclude that although creatine does slightly raise creatinine levels there is no progressive effect to cause negative consequences to renal function and health in already healthy individuals when proper dosage recommendations are followed [73-77]. Urinary methylamine and formaldehyde have been shown to increase due to creatine supplementation of 20 g/d; this however did not bring the production outside of normal healthy range and did not impact on kidney function [56,78]. It has been advised that further research be carried out into the effects of creatine supplementation and health in the elderly and adolescent [73,75]. More recently, a randomized, double blind, 6 month resistance exercise and supplementation intervention [79] was performed on elderly men and women (age >65 years) in which subjects were assigned to either a supplement or placebo group. The supplement group was given 5 g CM, 2 g dextrose and 6 g conjugated linoleic acid/d, whilst the placebo group consumed 7 g dextrose and 6 g safflower oil/d. CM administration showed significantly greater effects to improve muscular endurance, isokinetic knee extension strength, fat free mass and to reduce fat mass compared to placebo. Furthermore the supplement group had an increase in serum creatinine but not creatinine clearance suggesting no negative effect on renal function.
What you eat plays a big role in how much muscle your body can build. Proteins are especially important for building muscle. When you eat protein, your body breaks it down into amino acids which are the building blocks of muscle. How much protein you should include in your diet depends on a number of factors including your age and muscle building goals. Older adults who engage in resistance training and those hoping for maximum muscle growth should eat 1 to 1.3 grams of protein per kg of body weight (2, 3). If you weigh 150 lbs, that means you should take between 68 and 88 g of protein daily. Other recommendations are more modest, suggesting that .36 grams of protein per pound of body weight is enough.
Cooke et al [41] observed positive effects of a prior (0.3 g/d kg BW) loading and a post maintenance protocol (0.1 g/d kg BW) to attenuate the loss of strength and muscle damage after an acute supramaximal (3 set x 10 rep with 120% 1RM) eccentric resistance training session in young males. The authors speculate that creatine ingestion prior to exercise may enhance calcium buffering capacity of the muscle and reduce calcium-activated proteases which in turn minimize sarcolemma and further influxes of calcium into the muscle. In addition creatine ingestion post exercise would enhance regenerative responses, favoring a more anabolic environment to avoid severe muscle damage and improve the recovery process. In addition, in vitro studies have demonstrated the antioxidant effects of creatine to remove superoxide anion radicals and peroxinitrite radicals [42]. This antioxidant effect of creatine has been associated with the presence of Arginine in its molecule. Arginine is also a substrate for nitric oxide synthesis and can increase the production of nitric oxide which has higher vasodilatation properties, and acts as a free radical that modulates metabolism, contractibility and glucose uptake in skeletal muscle. Other amino acids contained in the creatine molecule such as glycine and methinine may be especially susceptible to free radical oxidation because of sulfhydryl groups [42]. A more recent in vitro study showed that creatine exerts direct antioxidant activity via a scavenging mechanism in oxidatively injured cultured mammalian cells [43]. In a recent in vivo study Rhaini et al [44] showed a positive effect of 7 days of creatine supplementation (4 x 5 g CM 20 g total) on 27 recreational resistance trained males to attenuate the oxidation of DNA and lipid peroxidation after a strenuous resistance training protocol.

When creatine supplementation is combined with heavy resistance training, muscle insulin like growth factor (IGF-1) concentration has been shown to increase. Burke et al [2] examined the effects of an 8 week heavy resistance training protocol combined with a 7 day creatine loading protocol (0.25 g/d/kg lean body mass) followed by a 49 day maintenance phase (0.06 g/kg lean mass) in a group of vegetarian and non-vegetarian, novice, resistance trained men and women. Compared to placebo, creatine groups produced greater increments in IGF-1 (78% Vs 55%) and body mass (2.2 Vs 0.6 kg). Additionally, vegetarians within the supplemented group had the largest increase of lean mass compared to non vegetarian (2.4 and 1.9 kg respectively). Changes in lean mass were positively correlated to the modifications in intramuscular total creatine stores which were also correlated with the modified levels of intramuscular IGF-1. The authors suggested that the rise in muscle IGF-1 content in the creatine group could be due to the higher metabolic demand created by a more intensely performed training session. These amplifying effects could be caused by the increased total creatine store in working muscles. Even though vegetarians had a greater increase in high energy phosphate content, the IGF-1 levels were similar to the amount observed in the non vegetarian groups. These findings do not support the observed correlation pattern by which a low essential amino acid content of a typical vegetarian diet should reduce IGF-1 production [33]. According to authors opinions it is possible that the addition of creatine and subsequent increase in total creatine and phosphocreatine storage might have directly or indirectly stimulated production of muscle IGF-I and muscle protein synthesis, leading to an increased muscle hypertrophy [2].


We can all pile on the pounds, just stay in the fast food lane, but it’s a nutrient-dense healthy diet, that will promote lean muscle development and size. In truth, muscular growth and building that brick house frame, can be harder to achieve than losing weight, and very frustrating. But we are here to help - follow our top 8 tips and you'll pack on lean muscle and size far more easily and be well on your way to achieving that physique you want.
Negative regulators of the creatine transporter (CrT) are those that, when activated, reduce the activity of the CrT and overall creatine uptake into cells. As noted above, CrT activity is positively regulated by mTOR.[158] Consistent with the well-known role of AMPK as a suppressor mTOR signaling,[177] CrT activity has also been shown to be inhibited in response to AMPK activation in kidney epithelial cells.[178] Since AMPK suppresses mTOR via upstream TSC2 activation,[179] the negative regulation of AMPK on CrT activity in these cells appears to occur through an indirect mechanism. Although indirect, activation of AMPK has been noted to reduce the Vmax of the CrT without altering creatine binding, and is involved in internalizing the receptors.[178] This pathway seems to max out at around 30% suppression, with no combination of mTOR antagonists and AMPK inducers further suppressing creatine uptake.[178]

In patients with DM1 given a short loading phase (10.6g for ten days) followed by a 5.3g maintenance for the remainder of an 8-week trial noted that supplementation resulted in a minor improvement in strength (statistical significance only occurred since placebo deteriorated) and no significant difference was noted in self-reported perceived benefits.[565] Maintaining a 5g dosage for four months also failed to significantly improve physical performance (handgrip strength and functional tests) in people with DM1, possible related to a failure to increase muscular phosphocreatine concentrations.[566]


For the bench press, start with a weight that you can lift comfortably. If you are a beginner, try lifting the bar along with 5lbs or 10lbs on each side. With arms at shoulder-width apart, grab onto the bar and slowly lower the bar until it's at nipple level; push up until your arms are fully extended upwards. Do 8–10 repetitions (reps) like this for three sets (3 x 8), adding additional weight each set. Once you have a few months of practice, slowly increase weight and go down to 6–8 reps per set, aiming to reach muscle failure at the end of the third set.
×