Many non-competitive bodybuilders choose not to adopt this conventional strategy, as it often results in significant unwanted fat gain during the "bulking" phase. The attempt to increase muscle mass in one's body without any gain in fat is called clean bulking. Competitive bodybuilders focus their efforts to achieve a peak appearance during a brief "competition season".[citation needed] Clean bulking takes longer and is a more refined approach to achieving the body fat and muscle mass percentage a person is looking for. A common tactic for keeping fat low and muscle mass high would be to have higher calorie and lower calorie days to maintain a balance between gain and loss. Many clean bulk diets start off with a moderate amount of carbs, moderate amount of protein, and a decently low amount of fats. "Gaining lean muscle means going for leaner cuts of meat, like flank steaks and fillets, chicken, and, of course, fish," says White[who?]. "Enjoy your meat with some starch: rice, beans, quinoa, whole-grain couscous, or sweet potato, for example".[20] To maintain a clean bulk it is important to reach calorie goals every day. Macronutrient goals will be different for each person, but, it is ideal to get as close as possible.


Creatine supplementation in the under 18 population has not received a great deal of attention, especially in regards to sports/exercise performance. Despite this, creatine is being supplemented in young, <18 years old, athletes [52,53]. In a 2001 report [52] conducted on pupils from middle and high school (aged 10 – 18) in Westchester County (USA) 62 of the 1103 pupils surveyed were using creatine. The authors found this concerning for 2 main reasons: firstly, the safety of creatine supplementation is not established for this age group and is therefore not recommended. Secondly, it was speculated that taking creatine would lead on to more dangerous performance enhancing products such as anabolic steroids. It is important to point out that this potential escalation is speculation. Furthermore, a questionnaire was used to determine creatine use amongst this age group and does not necessarily reflect the truth.
The US FDA reports 50,000 health problems a year due to dietary supplements [14] and these often involve bodybuilding supplements.[15] For example, the "natural" best-seller Craze, 2012's "New Supplement of the Year" by bodybuilding.com, widely sold in stores such as Walmart and Amazon, was found to contain N,alpha-Diethylphenylethylamine, a methamphetamine analog.[16] Other products by Matt Cahill have contained dangerous substances causing blindness or liver damage, and experts say that Cahill is emblematic for the whole industry.[17]
When it comes to building lean muscle, size bodybuilders are king. That’s their ultimate goal. Sure, Crossfit, powerlifting and all the other modalities will build muscle, but that’s not their focus. They want performance and any muscle they build is a side effect. Not so with bodybuilding where muscle size and shape are the priorities. Learning how to build muscle for the sake of building muscle has some benefits to the performance athlete. It allows for ais less injury prone. Its also a fact that bigger muscle contract harder regardless of technique or form, so it’s a good strategy to throw in some bodybuilder muscle building sessions here and there to give yourself stronger muscles to then train for performance. Build the muscle bigger, then train it to perform better.
In vitro, creatine (0.125mM or higher) can reduce excitotoxicity from glutamate, which is thought to be secondary to preserving intracellular creatine phosphate levels.[209] Glutamate-induced excitotoxicity is caused by excessive intracellular calcium levels resulting from ATP depletion. Since high levels of calcium inside the cell are toxic, ATP preserves membrane integrity,[210] in part by promoting calcium homeostasis. When ATP is depleted, the sodium-potassium ATPase pump (Na+,K+-ATPase) stops working, leading to sodium accumulation in the cell. This reduces the activity of the sodium-calcium exchange pump, which, alongside a lack of ATP, reduces calcium efflux through the Na+,K+-ATPase. Thus, ATP depletion leads to intracellular calcium overload, loss of membrane potential, and excitotoxic cell death. Therefore, by helping preserve ATP levels, creatine is protective against excitotoxicity. This protective effect was noted after either creatine preloading or addition up to 2 hours after excitotoxicity.[209] Protection from glutamate-induced toxicity also extends to glial cells[211] and is additive with COX2 inhibition.[212]
Creatine is normally metabolized into creatinine (note the difference in spelling), which is eliminated by the kidneys under normal conditions. When the kidneys fail and cannot clear the blood as effectively, many metabolites get “backlogged” in the blood. Creatinine is easy to measure and as such it is a biomarker of kidney damage.[623][624] If serum creatinine levels are elevated, the doctor may suspect some kidney damage. Low-dose creatine (≤5 g/day) may not cause alterations in this biomarker in otherwise normal adults[524][625][525] but high doses of supplemental creatine may cause a false positive (an increase in creatinine, due to creatine turning into creatinine, which does not signify kidney damage) and is a diagnostic error.[520][518][626][523][517] Most studies, however, have noted only a small increase in creatinine levels even with doses ≈20 g/day.[524][626][627]

When looking specifically at human studies, there has been a failure of creatine supplementation to induce or exacerbate kidney damage in people with amyotrophic lateral sclerosis (ALS). Subjects do not experience kidney damage for up to or over a year’s worth of supplementation in the 5-10g range.[505][506][507] Postmenopausal women,[517] people with type II diabetes,[518] people on hemodialysis,[313] otherwise healthy elderly,[519] young people,[454][520][521] and athletes do not experience kidney damage either.[324] Moreover, numerous scientific reviews on both the long- and short-term safety of supplemental creatine have consistently found no adverse effects on kidney function in a wide range of doses.[522][523][524][452][525][451][526][527] However, while doses >10 g/day have been found not to impair kidney function, there are fewer long-term trials using such high chronic daily intakes.[527]
While some supplements may in fact provide health benefits, generally speaking, consumers should purchase and use these products cautiously as they are not closely regulated by the Food and Drug Administration (FDA). Also, bodybuilders are advised to discuss supplementation plans with a registered dietitian or primary care physician prior to use to optimize effectiveness and minimize potential harmful consequences. 

Carbohydrates play an important role for bodybuilders. They give the body energy to deal with the rigors of training and recovery. Carbohydrates also promote secretion of insulin, a hormone enabling cells to get the glucose they need. Insulin also carries amino acids into cells and promotes protein synthesis.[26] Insulin has steroid-like effects in terms of muscle gains.[27] It is impossible to promote protein synthesis without the existence of insulin, which means that without ingesting carbohydrates or protein—which also induces the release of insulin—it is impossible to add muscle mass.[28] Bodybuilders seek out low-glycemic polysaccharides and other slowly digesting carbohydrates, which release energy in a more stable fashion than high-glycemic sugars and starches. This is important as high-glycemic carbohydrates cause a sharp insulin response, which places the body in a state where it is likely to store additional food energy as fat. However, bodybuilders frequently do ingest some quickly digesting sugars (often in form of pure dextrose or maltodextrin) just before, during, and/or just after a workout. This may help to replenish glycogen stored within the muscle, and to stimulate muscle protein synthesis.[29]

All you need to know about low creatinine levels Creatinine is a waste material in the body, and low levels can suggest a shortfall in liver function or activity. This MNT Knowledge Center feature looks at low creatinine levels., as well as information on what creatinine is, how it affects the body, and how to increase low creatinine levels. Read now


In people with COPD given either glucose placebo (40.7g) or creatine supplementation (5.7g creatine with 35g glucose) thrice daily for two weeks followed by a single dose for ten weeks, supplementation was associated with improvements in muscular strength and endurance, but not cardiovascular exercise potential.[579] A later trial of larger power using a loading phase of 22g creatine with a maintenance phase of 3.76g during rehabilitative exercise failed to replicate the improvements in skeletal muscle performance despite increased body weight seen with creatine,[580] and the failure to improve cardiovascular performance during aerobic exercise seen in both aforementioned studies has been replicated elsewhere after eight weeks supplementation, during which muscular performance was, again, unaffected.[581]
Research shows that starting as early as age 30, the body begins to slowly lose muscle mass, with women losing up to 15 percent of their total-body muscle per decade by age 50. Apart from declines in strength, that declining muscle mass comes with a declining metabolism, Emilia Ravski, D.O., a sports medicine specialist with Hoag Orthopedic Institute in California, tells SELF. This decline in metabolic rate is actually one driving factor of the weight that women generally tend to put on after we naturally hit our peak muscle levels in our 20s, research from Tufts University suggests.
Contrast loading is the alternation of heavy and light loads. Considered as sets, the heavy load is performed at about 85-95% 1 repetition max; the light load should be considerably lighter at about 30-60% 1RM. Both sets should be performed fast with the lighter set being performed as fast as possible. The joints should not be locked as this inhibits muscle fibre recruitment and reduces the speed at which the exercise can be performed. The lighter set may be a loaded plyometric exercise such as loaded squat jumps or jumps with a trap bar.
We’ll be talking more about this later, but for now, just give it a shot! In strength training you can see your progress so clearly that as you can do more and more, you’ll also be rewarded by seeing your strength progress from level 1 to level 50! If you aren’t a fan of the downtime, put on a book on tape or throw on your favorite playlist while circuit training to ensure you’re always moving (instead of sitting and waiting in between sets).

It's OK to be a little sore. Your muscles might feel achy or tired the day after a tough training session thanks to DOMS, or delayed onset muscle soreness. When you strength train you're causing microscopic damage to the tissue that will be repaired, that's how you build stronger lean muscle. Speaking of repair and recovery, though, rest days are important. "If you constantly break down muscle without a recovery period, you won’t give the muscle fibers a chance to repair and build back stronger,” explains Davis.

Recommended Dose: 3-6 grams before or during exercise. A ratio of two parts leucine to one part each of isoleucine and valine appears to be most beneficial. As Krissy Kendall, PhD, explains in "The Top 7 Supplements to Boost Endurance Performance," BCAAs can be just as effective for endurance athletes like runners, rowers, and cyclists as they can be for lifters and bodybuilders.
In a mouse model of allergin-induced asthma, where mice were sensitized by ovalbumin for three weeks and then given 500mg/kg creatine, supplementation induced an increase in asthmatic hyperresponsiveness to low but not high doses of methacholine.[440] This hyperresponsiveness was associated with increased eosinophil and neutrophil infiltration into the lungs, and an increase in Th2 cell cytokines (IL-4 and IL-5) alongside an increase in IGF-1,[440] which is known to influence this process.[441] Interestingly, there was a nonsignificant increase in responsiveness in mice not sensitized to ovalbumin.[440]

A previous meta-analysis [28] reported an overall creatine supplementation effect size (ES) of 0.24 ± 0.02 for activities lasting ≤30 s. (primarily using the ATP- phosphocreatine energy system). For this short high-intensity exercise, creatine supplementation resulted in a 7.5 ± 0.7% increase from base line which was greater than the 4.3 ± 0.6% improvement observed for placebo groups. When looking at the individual selected measures for anaerobic performance the greatest effect of creatine supplementation was observed on the number of repetitions which showed an ES of 0.64 ± 0.18. Furthermore, an increase from base line of 45.4 ± 7.2% compared to 22.9 ± 7.3% for the placebo group was observed. The second greatest ES was on the weight lifted at 0.51 ± 0.16 with an increase from base line of 13.4 ± 2.7% for the placebo group and 24.7 ± 3.9% for the creatine group. Other measures improved by creatine with a mean ES greater than 0 were for the amount of work accomplished, weight lifted, time, force production, cycle ergometer revolutions/min and power. The possible effect of creatine supplementation on multiple high intensity short duration bouts (<30 s) have shown an ES not statistically significant from 0. This would indicate that creatine supplementation might be useful to attenuate fatigue symptoms over multiple bouts of high-intensity, short duration exercise. The ES of creatine on anaerobic endurance exercise (>30 – 150s), primarily using the anaerobic glycolysis energy system, was 0.19 ± 0.05 with an improvement from baseline of 4.9 ± 1.5 % for creatine and -2.0 ± 0.6% for the placebo. The specific aspects of anaerobic endurance performance improved by creatine supplementation were work and power, both of which had a mean ES greater than 0. From the findings of this previous meta-analysis [28] it would appear that creatine supplementation has the most pronounced effect on short duration (<30s) high intensity intermittent exercises.
Supplementation of creatine at 20g daily for a loading phase, followed by 10g daily for eight weeks in healthy volunteers resulted in a 23% reduction of triglycerides, which remained lower than baseline for four weeks after supplementation ceased, [321] while vLDL (the lipid particle which carries most of the triglyerides. which TMG causes to be released from the liver) was also reduced by 22% in this study.[321] 
Creatine ethyl ester is more a pronutrient for creatinine rather than creatine,[74] and was originally created in an attempt to bypass the creatine transporter. It is currently being studied for its potential as a treatment for situations in which there is a lack of creatine transporters (alongside cyclocreatine as another possible example).[77] Its efficacy may rely on intravenous administration, however.
2-[carbamimidoyl(methyl)amino]acetic acid, Cr, Creatin, Creatina, Créatine, Créatine Anhydre, Creatine Anhydrous, Creatine Citrate, Créatine Citrate, Creatine Ethyl Ester, Créatine Ethyl Ester, Creatine Ethyl Ester HCl, Créatine Ethyl Ester HCl, Creatine Gluconate, Creatine Hydrochloride, Créatine Kré Alkaline, Creatine Malate, Créatine Malate, Creatine Monohydrate, Créatine Monohydrate, Créatine Monohydratée, Creatine Pyroglutamate, Créatine Pyroglutamate, Creatine Pyruvate, Créatine Pyruvate, Dicreatine Malate, Dicréatine Malate, Di-Creatine Malate, Éthyle Ester de Créatine, Glycine, Kreatin, Kre-Alkalyn Pyruvate, Malate de Tricréatine, N-(aminoiminométhyl)-N-Méthyl, N-(aminoiminomethyl)-N methyl glycine, N-amidinosarcosine, Phosphocreatine, Phosphocréatine, Tricreatine HCA, Tricréatine HCA, Tricreatine Malate, Tricréatine Malate.

×