Using too much weight, too soon; always start lower than your expected ability and work your way up that first workout. If your form suffers, you are swinging the weight, or using momentum, this indicates you may be using too much weight. Greater momentum increases the potential for injury and reduces the effectiveness to the muscle group being targeted.
I HATE that the resistance training community can be so tribal. I have been preaching to bodybuilders for years about the benefits of powerlifting, or Olympic lifting or kettlebells or even Crossfit style conditioning and many have been receptive. Learn from each other and achieve levels of fitness you simply could not have otherwise. Don’t brush off bodybuilding wisdom…it could be the missing factor in your program.
Do you know what happens when a person attempts to build muscle faster than they legitimately can? They fail, and then they wonder why it’s not working as quickly as they thought it would. From there, they’ll jump from workout to workout, diet to diet and useless supplement to useless supplement in the hopes of finally finding the missing link that will make it happen. But they’re never going to find it. They’ll just keep wasting their time, effort and money searching for something that doesn’t exist.
A typical creatine supplementation protocol consists of a loading phase of 20 g CM/d or 0.3 g CM/kg/d split into 4 daily intakes of 5 g each, followed by a maintenance phase of 3-5 g CM/d or 0.03 g CM/kg/d for the duration of the supplementation period [5]. Other supplementation protocols are also used such as a daily single dose of around 3 – 6 g or between 0.03 to 0.1 g/kg/d [15,55] however this method takes longer (between 21 to 28 days) to produce ergogenic effects [5]. Sale et al [56] found that a moderate protocol consisting of 20 g CM taken in 1g doses (evenly ingested at 30-min intervals) for 5 days resulted in reduced urinary creatine and methylamine excretion, leading to an estimated increase in whole body retention of creatine (+13%) when compared with a typical loading supplementation protocol of 4 x 5 g/d during 5 days (evenly ingested at 3 hour intervals). This enhancement in creatine retention would lead to a significantly higher weight gain when people follow a moderate protocol ingestion of several doses of small amounts of CM evenly spread along the day.

Gordon, P. H., Cheung, Y. K., Levin, B., Andrews, H., Doorish, C., Macarthur, R. B., Montes, J., Bednarz, K., Florence, J., Rowin, J., Boylan, K., Mozaffar, T., Tandan, R., Mitsumoto, H., Kelvin, E. A., Chapin, J., Bedlack, R., Rivner, M., McCluskey, L. F., Pestronk, A., Graves, M., Sorenson, E. J., Barohn, R. J., Belsh, J. M., Lou, J. S., Levine, T., Saperstein, D., Miller, R. G., and Scelsa, S. N. A novel, efficient, randomized selection trial comparing combinations of drug therapy for ALS. Amyotroph.Lateral.Scler. 2008;9:212-222. View abstract.
Cyclocreatine appears to be passively diffused through membranes and not subject to the creatine transporter, which can be beneficial for cases where creatine transporter function is compromised (creatine non-response and SLG6A8 deficiency). Similar to other forms of creatine, it buffers ATP concentrations, although its efficacy as a supplement in otherwise healthy people is currently unknown.

Previous investigations have shown that a single dose of CM (8 grams) increased the number of repetitions performed during an upper-body resistance training protocol and reduced soreness at 24 and 48 hours post-exercise (compared to a placebo).7 Recently, researchers from Mississippi State University found that a single dose of CM (8 grams) significantly increased the number of lower-body repetitions compared to a placebo group.[8]

A: No. You should ensure that the squat and hinge motor pattern are both emphasized but other variations (front squat, sumo deadlift, safety bar squat, Romanian deadlift) should be included until you can master technique on the more advanced variations. For more information on exercise progressions and regressions see this article: Train Like An Athlete, Look Like a Bodybuilder.
All you need to know about low creatinine levels Creatinine is a waste material in the body, and low levels can suggest a shortfall in liver function or activity. This MNT Knowledge Center feature looks at low creatinine levels., as well as information on what creatinine is, how it affects the body, and how to increase low creatinine levels. Read now
Supplementation of creatine at 20g daily for a loading phase, followed by 10g daily for eight weeks in healthy volunteers resulted in a 23% reduction of triglycerides, which remained lower than baseline for four weeks after supplementation ceased, [321] while vLDL (the lipid particle which carries most of the triglyerides. which TMG causes to be released from the liver) was also reduced by 22% in this study.[321] 
^ Jump up to: a b c d Luckose F, Pandey MC, Radhakrishna K (2015). "Effects of amino acid derivatives on physical, mental, and physiological activities". Crit. Rev. Food Sci. Nutr. 55 (13): 1793–1807. doi:10.1080/10408398.2012.708368. PMID 24279396. HMB, a derivative of leucine, prevents muscle damage and increases muscle strength by reducing exercise-induced proteolysis in muscles and also helps in increasing lean body mass. ... The meta analysis studies and the individual studies conducted support the use of HMB as an effective aid to increase body strength, body composition, and to prevent muscle damage during resistance training.
Despite creatine not interfering with UV(A) irradiation acting upon a cell or the production of oxidation due to it, creatine appears to prevent the functional consequences (such as mitochondrial DNA damage) due to preventing an ATP depletion in the cell, which would normally precede a reduction in mitochondrial membrane potential and mutagenesis, but this effect is prevented for as long as creatine stores are sufficient.[446] Creatine has also been noted to near-fully protect mitochondrial DNA from hydroxyl radicals and oxidative damage, although there was no protective effect for nuclear DNA, due to it being less sensitive to hydroxyl radicals.[447]
It is known that intracellular energy depletion (assessed by a depletion of ATP) stimulates AMPK activity in order to normalize the AMP:ATP ratio,[333][334] and when activated AMPK (active in states of low cellular energy[335] and colocalizes with creatine kinase in muscle tissue[336]) appears to inhibit creatine kinase via phosphorylation (preserving phosphocreatine stores but attenuating the rate that creatine buffers ATP). While phosphocreatine technically inhibits AMPK, this does not occur in the presence of creatine at a 2:1 ratio.[334] It seems that if the ratio of phosphocreatine:creatine increases (indicative of excess cellular energy status) that AMPK activity is then attenuated, since when a cell is in a high energy status, there is less AMP to directly activate AMPK.[334][336][337]