“Don't get set into one form, adapt it and build your own, and let it grow. Be like water. Empty your mind, be formless, shapeless — like water. Now you put water in a cup, it becomes the cup; You put water into a bottle it becomes the bottle; You put it in a teapot it becomes the teapot. Now water can flow or it can crash. Be water, my friend.” Bruce Lee
Homocyteine (normal serum range of 5-14µM) is known to adversely affect motor control in genetically susceptible people when their levels exceed 500µM, which is usually associated with genetically induced deficiencies of B12.[360][361] In these particular instances (assessed by rats fed homocysteine to increase serum levels to such a high level[362][363]) it appears that administration of 50mg/kg creatine (injections) to these rats can protect dysfunction in muscle metabolism (pyruvate kinase activity, Krebs cycle intermediates, and muscle cell viability) induced by homocysteine.[363]
Need the motivation to push past your comfort zone and squeeze out one more push-up or bicep curl? Sure, it helps to remember that you’ll get stronger, rock more toned muscles and rev your metabolism, thanks to all that added muscle mass. But if that wasn’t enough, now comes news that all that pump-itude (yes, that’s an SNL reference) has psychological benefits, too.
Studies that use a dosage range typical of creatine supplementation (in the range of 5g a day following an acute loading period) note increases to total body water of 6.2% (3.74lbs) over 9 weeks and[608] 1.1kg over 42 days.[609] Interestingly, some studies comparing creatine paired with training against training itself fail to find a significant difference in percentage of water gained (which is inherently to activity) with standard oral doses of creatine[609][607][610] (although low dose creatine supplementation of 0.03g/kg or 2.3g daily doesn’t appear to increase water retention[611]) despite more overall water weight being gained, due to an equal gain of dry mass in muscles. One study has quantified the percentage increase in mass of muscle cells to be 55% water, suggesting the two groups are fairly equal.[609]
SAMe is the primary methyl donor in the human body, and supplements that preserve SAMe (such as trimethylglycine; TMG) promote a variety of benefits in the human body, like a reduction in homocysteine and reduced risk of fatty liver. Creatine has been implicated in both reducing homocysteine[124] and preventing fatty liver in rodents[125], thought to be secondary to preserving SAMe.
Creatine is one of the most popular and widely researched natural supplements. The majority of studies have focused on the effects of creatine monohydrate on performance and health; however, many other forms of creatine exist and are commercially available in the sports nutrition/supplement market. Regardless of the form, supplementation with creatine has regularly shown to increase strength, fat free mass, and muscle morphology with concurrent heavy resistance training more than resistance training alone. Creatine may be of benefit in other modes of exercise such as high-intensity sprints or endurance training. However, it appears that the effects of creatine diminish as the length of time spent exercising increases. Even though not all individuals respond similarly to creatine supplementation, it is generally accepted that its supplementation increases creatine storage and promotes a faster regeneration of adenosine triphosphate between high intensity exercises. These improved outcomes will increase performance and promote greater training adaptations. More recent research suggests that creatine supplementation in amounts of 0.1 g/kg of body weight combined with resistance training improves training adaptations at a cellular and sub-cellular level. Finally, although presently ingesting creatine as an oral supplement is considered safe and ethical, the perception of safety cannot be guaranteed, especially when administered for long period of time to different populations (athletes, sedentary, patient, active, young or elderly).
In a pilot study on youth with cystic fibrosis, supplementation of creatine at 12g for a week and 6g for eleven weeks afterward was associated with a time-dependent increase in maximal isometric strength reaching 14.3%, which was maintained after 12-24 weeks of supplement cessation (18.2% higher than baseline).[485] This study noted that more patients reported an increase in wellbeing (9 subjects, 50%) rather than a decrease (3, 17%) or nothing (6, 33%) and that there was no influence on chest or lung symptoms.[485]
More specifically, you can expect to end up in the upper half of these ranges ONLY if you are a beginner, younger, and/or have amazing genetics. You can expect to end up in the lower half of these ranges if you are an intermediate or advanced trainee, older, and/or have poor genetics. The average person can expect to end up somewhere in the middle. Additional details here: How Much Muscle Can You Gain?
^ Jump up to: a b c Morton RW, Murphy KT, McKellar SR, Schoenfeld BJ, Henselmans M, Helms E, Aragon AA, Devries MC, Banfield L, Krieger JW, Phillips SM (2017). "A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults". Br J Sports Med. 52 (6): bjsports–2017–097608. doi:10.1136/bjsports-2017-097608. PMC 5867436. PMID 28698222.
Every 4-8 weeks, vary your routine. As your body adapts to stress, you'll hit a plateau where the benefits of weight training will begin to diminish. The only way to prevent this from happening is to change things up, such as by increasing weight and changing exercises. Try a week of really piling the weights on, and do six to eight reps per set at the maximum weight you can manage with proper form. The more lifting experience you have, the more often you should vary your routine.
Creatine Ethyl Ester, or CEE for short, is a powdered form of creatine which has an ethyl group attached to the creatine. This is said to make the creatine more easily absorbed in the human body which would allow you to benefit the most. The studies have not been entirely conclusive as to whether CEE is better than creatine monohydrate. Since Creatine monohydrate is the single most researched form of creatine, it is
In 1912, Harvard University researchers Otto Folin and Willey Glover Denis found evidence that ingesting creatine can dramatically boost the creatine content of the muscle.[5][non-primary source needed] In the late 1920s, after finding that the intramuscular stores of creatine can be increased by ingesting creatine in larger than normal amounts, scientists discovered creatine phosphate, and determined that creatine is a key player in the metabolism of skeletal muscle. The substance creatine is naturally formed in vertebrates.[6]
Creatine is a hydrophilic polar molecule that consists of a negatively charged carboxyl group and a positively charged functional group [64]. The hydrophilic nature of creatine limits its bioavailability [65]. In an attempt to increase creatines bioavailability creatine has been esterified to reduce the hydrophilicity; this product is known as creatine ethyl ester. Manufacturers of creatine ethyl ester promote their product as being able to by-pass the creatine transporter due to improved sarcolemmal permeability toward creatine [65]. Spillane et al [65] analyzed the effects of a 5 days loading protocol (0.30 g/kg lean mass) followed by a 42 days maintenance phase (0.075 g/kg lean mass) of CM or ethyl ester both combined with a resistance training program in 30 novice males with no previous resistance training experience. The results of this study [65] showed that ethyl ester was not as effective as CM to enhance serum and muscle creatine stores. Furthermore creatine ethyl ester offered no additional benefit for improving body composition, muscle mass, strength, and power. This research did not support the claims of the creatine ethyl ester manufacturers. 
×