Creatine Ethyl Ester, or CEE for short, is a powdered form of creatine which has an ethyl group attached to the creatine. This is said to make the creatine more easily absorbed in the human body which would allow you to benefit the most. The studies have not been entirely conclusive as to whether CEE is better than creatine monohydrate. Since Creatine monohydrate is the single most researched form of creatine, it is
On top of this, you’ll need to consume more calories than you’re burning. Burning more calories each day than you eat is a great way to lose weight, but if your goal is to put on muscle mass, this can make the process much harder. Your body requires calories to build new muscle tissue, but this can’t occur if all the body’s energy is being used up for daily processes. Because of this, some bodybuilding supplements include weight gainers to help you get more healthy calories in your diet. 

In addition to improving athletic performance and muscle strength, creatine is taken by mouth for creatine deficiency syndromes that affect the brain, aging, bone density, chronic obstructive pulmonary disease (COPD), congestive heart failure (CHF), depression, diabetes, exercise tolerance, fibromyalgia, Huntington's disease, disease that cause inflammation in the muscles (idiopathic inflammatory myopathies), Parkinson's disease, diseases of the muscles and nerves, multiple sclerosis, muscle atrophy, muscle cramps, breathing problems in infants while sleeping, head trauma, Rett syndrome, an eye disease called gyrate atrophy, inherited disorders that affect the senses and movement, schizophrenia, muscle breakdown in the spine, and recovery from surgery. It is also taken by mouth to slow the worsening of amyotrophic lateral sclerosis (ALS, Lou Gehrig's disease), osteoarthritis, rheumatoid arthritis, McArdle's disease, and for various muscular dystrophies.

Creatine supplementation appears to be somewhat similar to TMG supplementation in the sense that they both promote localized synthesis of phosphatidylcholine, effluxing triglycerides from the liver into serum and thus potently protecting from diet-induced fatty liver. The concentration at which this occurs is within the range supplemented by humans.

HMB supplementation is claimed to build muscle size and strength and promote fat loss in conjunction with a strength program. Studies of HMB have shown some benefit to strength athletes in building muscle bulk but the benefits are relatively small and the cost of HMB is high. The effective dose seems to be 3 grams/day divided into 1 gram three times a day. Probably not worth taking. Beta-alanine is the new guy on the block and has not been evaluated sufficiently in my view. It may provide some advantage in high-intensity sports like weight training but it’s much too early to know that it does. Some early studies are flawed. Save your money or try creatine instead.
If you’re a beginner, you should train with three full-body workouts per week. In each one, do a compound pushing movement (like a bench press), a compound pulling movement (like a chinup), and a compound lower-body exercise (squat, trap-bar deadlift, for example). If you want to add in 1–2 other exercises like loaded carries or kettlebell swings as a finisher, that’s fine, but three exercises is enough to work the whole body.
Eating the right carbs is important too. Carbohydrate is stored in your body in the form of glycogen. Glycogen in the muscles is an important fuel reserve during intense physical exercise or in times of energy restriction – protein sparing. It is best to restrict or to keep away from junk carbohydrates such as sweets, cakes, and biscuits, and stick to foods like porridge, pasta (wholemeal), rice (brown), bread (wholegrain), and cereals (try to choose the versions with low or reduced sugar and salt). For more on carbohydrate and the effect of sugar on the body, click here.
In regard to the blood brain barrier (BBB), which is a tightly woven mesh of non-fenestrated microcapillary endothelial cells (MCECs) that prevents passive diffusion of many water-soluble or large compounds into the brain, creatine can be taken into the brain via the SLC6A8 transporter.[192] In contrast, the creatine precursor (guanidinoacetate, or GAA) only appears to enter this transporter during creatine deficiency.[192] More creatine is taken up than effluxed, and more GAA is effluxed rather than taken up, suggesting that creatine utilization in the brain from blood-borne sources[192] is the major source of neural creatine.[193][192] However, “capable of passage” differs from “unregulated passage” and creatine appears to have tightly regulated entry into the brain in vivo[193]. After injecting rats with a large dose of creatine, creatine levels increased and plateaued at 70uM above baseline levels. These baseline levels are about 10mM, so this equates to an 0.7% increase when superloaded.[193] These kinetics may be a reason for the relative lack of neural effects of creatine supplementation in creatine sufficient populations.
×