While some supplements may in fact provide health benefits, generally speaking, consumers should purchase and use these products cautiously as they are not closely regulated by the Food and Drug Administration (FDA). Also, bodybuilders are advised to discuss supplementation plans with a registered dietitian or primary care physician prior to use to optimize effectiveness and minimize potential harmful consequences. 
"Start with two days for two to three weeks, then add a third day," says Davis*.*"Ideally, you should strength train three to five days per week, but work your way up—starting off at five days a week might shock your body." Here's a comprehensive three-day-per-week plan to get you started. Aim to complete 20-minute sessions, then gradually add on time in ten-minute increments until you're working for 45 to 60 minutes, suggests Davis.

Beach muscles and Olympic lifts draw more attention. But the many little stabilizer muscles around your shoulders, hips, and midsection — collectively the core — provide a strong foundation. Challenging the stability and mobility of these key muscles with medicine balls, physioballs, mini-bands, and rotational movements (lifting, chopping) pays huge dividends.
The genealogy of lifting can be traced back to the beginning of recorded history[1] where humanity's fascination with physical abilities can be found among numerous ancient writings. In many prehistoric tribes, they would have a big rock they would try to lift, and the first one to lift it would inscribe their name into the stone. Such rocks have been found in Greek and Scottish castles.[2] Progressive resistance training dates back at least to Ancient Greece, when legend has it that wrestler Milo of Croton trained by carrying a newborn calf on his back every day until it was fully grown. Another Greek, the physician Galen, described strength training exercises using the halteres (an early form of dumbbell) in the 2nd century.
Aim to eat roughly 250 to 500 extra calories per day. To make sure that any weight gained is from muscle, Fitzgerald recommends that the bulk of those calories come from protein. In a 2014 Pennington Biomedical Research Center study, people who ate a high-calorie diet rich in protein stored about 45 percent of those calories as muscle, while those following a low-protein diet with the same number of calories stored 95 percent of those calories as fat.

Although creatine is a natural component of food, the amount of food required to supersaturate the muscle with PCr may not be feasible. For example, it could require 22 pounds of meat daily [8]. If creatine monohydrate is proven to be a safe and effective ergogenic aid, creatine supplementation may be the simplest way to increasing muscle stores. It may be beneficial to avoid caffeine if taking creatine supplements. One study showed that caffeine diminished strength gains seen with creatine use [9].
Creatine is produced endogenously at an amount of about 1 g/d. Synthesis predominately occurs in the liver, kidneys, and to a lesser extent in the pancreas. The remainder of the creatine available to the body is obtained through the diet at about 1 g/d for an omnivorous diet. 95% of the bodies creatine stores are found in the skeletal muscle and the remaining 5% is distributed in the brain, liver, kidney, and testes [1]. As creatine is predominately present in the diet from meats, vegetarians have lower resting creatine concentrations [2].
In vitro studies on endothelial cells have noted that the benefits of creatine against atherosclerosis (via immune cell adhesion to the endothelial cell) are blocked with the pharmaceutical ZM241385, a high affintiy adenosine A2A receptor antagonist.[316] This particular receptor subset (A2A rather than other adenosine receptors) and its inhibition are similar to caffeine,[589] suggesting that caffeine may have an inhibitory effect on this mechanism of creatine.

A proper warm-up is an important part of an effective strength workout. Start by foam rolling your muscles to wake 'em up. "Foam rolling loosens up tight muscles so that they work the way they're designed to," says Davis. A dynamic warm-up is another important part of your pre-workout routine, it preps your muscles for the work they're about to do and helps increase your range of motion. Increasing your range of motion allows you to go deeper into those squats and fully extend those bicep curls, which means more muscle recruitment and better results. "These two combined reduce your risk of injury and allow you to push harder during your workout," says Davis. Get started with this five-minute warm-up.
It’s true—your genes can play a role when it comes to building muscle. In general, there are two types of muscle fibers: Type I, which are slow twitch, and Type II, which are fast twitch. Depending on which you have more of, you may have an easier or harder time gaining muscle. “Fast twitch muscle fibers are two times as thick as slow twitch muscle fibers, lending to the overall thickness of the muscle without any activity,” explains Lovitt. “Those people with a genetic predisposition of a high percentage of these fibers can increase muscle size very easily while the people with a higher percentage of slow twitch muscle fibers have to work really hard to put on mass.” It’s the reason why a world-class sprinter genetically has more fast twitch muscle fibers than a world-class marathoner—it comes down to what we’re born with.
For example, a 2015 review published in the peer-reviewed journal Applied Physiology, Nutrition, and Metabolism suggests that, for maximal muscle growth, people consume 25 to 35 grams of protein at breakfast, lunch and dinner. You'll find that amount of protein in a chicken breast, a cup of Greek yogurt with slivered almonds or about a three-quarter block of tofu.
Heart Failure is one of the single most common complications that face many people today. When a heart ages, the cells collect a yellow-brown layer which is waste and can lead to heart complications. This process is known as lipofuscin, or “aging pigment” which leads to death opposed to someone who can delay that as far as possible. [3] In mice, a study was performed where two groups of mice who had lipofuscin underwent different experiments, one group received creatine supplementation, and one group did not receive supplementation. What they found was that the mice who supplemented creatine lived 9% longer than the ones who did not receive creatine. 9% translated into human years results in almost 7 years, which could suggest that if you suffer from this deterioration, creatine supplementation could potentially increase your longevity by 7 years. [3]
How to maximize its effects: Take 20 grams of whey protein powder in the 30 minutes before working out, and take 40 grams within 60 minutes after training. Also consider taking 20-40 grams of whey immediately upon waking every morning to kick-start muscle growth. Your best bet is to choose a whey powder that contains whey protein hydrolysates (whey protein broken down into smaller fragments for faster digestion) or whey protein isolate.
One study on 27 otherwise healthy men supplementing creatine (0.3g/kg loading for a week, 0.05g/kg thereafter for 8 weeks) with a thrice weekly exercise regiment noted that alongside greater increase in lean mass and power relative to placebo at 4 and 8 weeks, myostatin in serum decreased to a greater extent with creatine (around 17% at 8 weeks, derived from graph) than it did with placebo (approximately 7%).[356] Increases in GASP-1, a serum protein that inhibits the actions of myostatin by directly binding to it,[357] were not different between groups.[356]
If you'’re looking to add muscle mass to your frame, hitting the weights hard is a given. Quality time in the gym begins a cascade of changes that will stimulate your muscles to grow bigger in response to the challenges you throw their way. It'’s tempting to think that'’s all it takes to add muscle to your body. After all, you can actually feel your biceps growing after an intense set of curls.
One supplement, which a large body of research has proven effective in building muscle mass when combined with intensive strength training, is creatine (sold as creatine monohydrate). Creatine, a source of rapid energy, is stored in the muscles in small amounts. With creatine loading or supplementation, bodybuilders increase muscle stores of the energy-containing compound which then can be used to provide an extra boost for an intense-high-weight lifting session. Studies support that ingestion of a relatively high dose of creatine (20 to 30 grams per day for up to two weeks) increases muscle creatine stores by 10 to 30 percent and can boost muscle strength by about 10 percent when compared with resistance training alone (Rawson & Volek, 2003). Some athletes report (though research does not necessarily support) muscle cramping in response after using creatine supplements.
Chwalbinska-Monteta [34] observed a significant decrease in blood lactate accumulation when exercising at lower intensities as well as an increase in lactate threshold in elite male endurance rowers after consuming a short loading (5 days 20 g/d) CM protocol. However, the effects of creatine supplementation on endurance performance have been questioned by some studies. Graef et al [35] examined the effects of four weeks of creatine citrate supplementation and high-intensity interval training on cardio respiratory fitness. A greater increase of the ventilatory threshold was observed in the creatine group respect to placebo; however, oxygen consumption showed no significant differences between the groups. The total work presented no interaction and no main effect for time for any of the groups. Thompson et al [36] reported no effects of a 6 week 2 g CM/d in aerobic and anaerobic endurance performance in female swimmers. In addition, of the concern related to the dosage used in these studies, it could be possible that the potential benefits of creatine supplementation on endurance performance were more related to effects of anaerobic threshold localization.

Creatine supplementation appears to attenuate decreases in GLUT4 expression seen with immobility and may increase GLUT4 expression during exercise. While it seems capable of increasing GLUT4 during resting conditions, it has failed to reach significance, suggesting that creatine supplementation works best with some stimuli associated with exercise.
Anti-depressive effects have been noted in woman with major depressive disorder when 5g of creatine monohydrate was supplemented daily for 8 weeks in combination with an SSRI. Benefits were seen at week two and were maintained until the end of the 8-week trial.[253] The improvement in depressive symptoms was associated with significantly increased prefrontal cortex levels of N-acetylaspartate, a marker of neuronal integrity,[254] and rich club connections, which refers to the ability of nerons to make connections to one another.[255]

When you’re doing higher reps, focus on the muscle you are trying to build and squeeze every ounce of effort out of it. Yes, cheesie as it may sound, visualizing the muscles working and growing while you train them can be helpful. A 2016 study in the European Journal of Applied Physiology found that, when lifters thought about their pecs and triceps during a workout, they activated them better.
Using too much weight, too soon; always start lower than your expected ability and work your way up that first workout. If your form suffers, you are swinging the weight, or using momentum, this indicates you may be using too much weight. Greater momentum increases the potential for injury and reduces the effectiveness to the muscle group being targeted.
Extracellular creatine (creatine outside of a cell) appears to influence creatine uptake into a cell. It seems that prolonged and excessive levels of creatine actually suppress uptake (a form of negative regulation to prevent excessive influx).[180] In vitro studies in rat muscle cells have shown that including 1mM creatine into cell culture medium substantially reduces creatine uptake into cells. The inhibitory effect was partially negated by protein synthesis inhibitors, suggesting that high levels of creatine induce the expression of a protein that suppresses creatine transporter activity.[180] Similar findings were reported in a later study in cultured mouse myoblasts, which noted a 2.4-fold increase in intracellular creatine levels in the presence of the protein synthesis inhibitor cyclohexamide.[174]

Mitochondrial myopathies are a subgroup of mitochondrial cytopathies in which the skeletal muscle is negatively influenced. They are characterized by weaknesses in muscular function and energy metabolism.[547] These particular myopathies are thought to benefit from creatine supplementation, since creatine can help with some of the dysregulated energy production.[548]
Naturo Nitro Creatine Chrome is an interesting choice for bulking. During the bulking process, many athletes lament losing muscle definition and feeling bloated. The magnesium creatine chelate in Naturo Nitro may help to counteract that effect as there’s some evidence that it could potentially improve performance without adding water weight. If you want to bulk but you want to keep definition, this may be worth considering.
The materials and information provided in this presentation, document and/or any other communication (“Communication”) from Onnit Labs, Inc. or any related entity or person (collectively “Onnit”) are strictly for informational purposes only and are not intended for use as diagnosis, prevention or treatment of a health problem or as a substitute for consulting a qualified medical professional. Some of the concepts presented herein may be theoretical.

Supplementation of a loading phase of creatine has been noted to augment the increase in RBC levels of superoxide dismutase (SOD) from exercise, when measured immediately after, by 8.1%, but control groups increased to match within an hour.[299] Glutathione (normally decreases with exercise) and catalase (increases) were both unaffected,[299] and elsewhere in vitro red blood cells incubated with 3mM of creatine (within the supplemental range) is able to improve filterability (a measure of cell rheology, or fluid structure of the cell[300]) when RBC creatine was increased by 12.3% to reach 554µM.[301] This was thought to be due to reduced oxidative stress (assessed via MDA) in the red blood cells, which in the presence of 1-5mM creatine was progressively reduced by 20-41%.[301]


Taking creatine supplements may increase the amount of creatine in the muscles. Muscles may be able to generate more energy or generate energy at a faster rate. Some people think that taking creatine supplements along with training will improve performance by providing quick bursts of intense energy for activities such as sprinting and weightlifting.


According to the abstract, in the stratified analyses by forms of aerobic exercise, weekly resistance exercise of 1 time or 1-59 minutes was associated with lower risks of total cardiovascular events and cardiovascular disease, regardless of meeting the aerobic exercise guidelines. The analysis showed that resistance training reduced the risk of cardiovascular events in 2 ways: training had a direct association with cardiovascular risk, and resistance training indirectly lowered cardiovascular risk by decreasing body mass index.
×