A previous meta-analysis [28] reported an overall creatine supplementation effect size (ES) of 0.24 ± 0.02 for activities lasting ≤30 s. (primarily using the ATP- phosphocreatine energy system). For this short high-intensity exercise, creatine supplementation resulted in a 7.5 ± 0.7% increase from base line which was greater than the 4.3 ± 0.6% improvement observed for placebo groups. When looking at the individual selected measures for anaerobic performance the greatest effect of creatine supplementation was observed on the number of repetitions which showed an ES of 0.64 ± 0.18. Furthermore, an increase from base line of 45.4 ± 7.2% compared to 22.9 ± 7.3% for the placebo group was observed. The second greatest ES was on the weight lifted at 0.51 ± 0.16 with an increase from base line of 13.4 ± 2.7% for the placebo group and 24.7 ± 3.9% for the creatine group. Other measures improved by creatine with a mean ES greater than 0 were for the amount of work accomplished, weight lifted, time, force production, cycle ergometer revolutions/min and power. The possible effect of creatine supplementation on multiple high intensity short duration bouts (<30 s) have shown an ES not statistically significant from 0. This would indicate that creatine supplementation might be useful to attenuate fatigue symptoms over multiple bouts of high-intensity, short duration exercise. The ES of creatine on anaerobic endurance exercise (>30 – 150s), primarily using the anaerobic glycolysis energy system, was 0.19 ± 0.05 with an improvement from baseline of 4.9 ± 1.5 % for creatine and -2.0 ± 0.6% for the placebo. The specific aspects of anaerobic endurance performance improved by creatine supplementation were work and power, both of which had a mean ES greater than 0. From the findings of this previous meta-analysis [28] it would appear that creatine supplementation has the most pronounced effect on short duration (<30s) high intensity intermittent exercises.
Heath suggests incorporating dropsets into your training routine by immediately decreasing the weight and repping out again to failure. “Dropsets overload the muscle with shorter rest periods and increasing volume which you need to grow,” says Heath. “That overload improves your body’s abilities to utilize more nutrients, natural growth hormone, and natural testosterone into those areas and makes the supplements you take more effective.” Heath’s favorite way to do dropsets is on a pin-loaded machine since it’s faster to switch weights.
Great! Start with strength training 🙂 When you’re overweight, my guess is that you want to be preserving the muscle you have while losing the majority of your weight through fat. With strength training, your overall weight loss may seem slower, but you will lose inches faster. Strength training increases your metabolism; as long as you’re still eating in a deficit, you’ll lose weight.
Creatine is most commonly used for improving exercise performance and increasing muscle mass in athletes and older adults. There is some science supporting the use of creatine in improving the athletic performance of young, healthy people during brief high-intensity activity such as sprinting. Because of this, creatine is often used as a dietary supplement to improve muscle strength and athletic performance. In the U.S., a majority of sports nutrition supplements, which total $2.7 billion in annual sales, contain creatine.
This cellular influx may also decrease protein oxidation rates, which leads to increases in nitrogen balance and indirectly increases muscle mass.[379] This lowering of protein oxidation is from signaling changes caused vicariously through cell swelling[380][381] and appears to upregulate 216 genes[378] in a range of 1.3 to 5-fold increases, with the largest increase seen in the protein involved in satellite cell recruitment, sphingosine kinase-1. Most importantly for muscle hypertrophy, the protein content of PKBa/Akt1, p38 MAPK, and ERK6 increased 2.8+/-1.2 fold.[378] Sixty-nine genes are also downregulated after creatine supplementation, to less notable degrees.

These supplements can vary considerably from product to product in ingredients, serving sizes, and more. But the goal of each of them is generally quite similar. Most bodybuilding supplements are designed to help stimulate new muscle growth, cut away excess fat, and improve the recovery process so that you can get the most out of each trip to the gym.


^ Jump up to: a b Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM (January 1992). "Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the 'phosphocreatine circuit' for cellular energy homeostasis". The Biochemical Journal. 281 ( Pt 1) (Pt 1): 21–40. doi:10.1042/bj2810021. PMC 1130636. PMID 1731757.


Research shows that strength training is especially effective at raising EPOC. That’s because, generally speaking, strength-training sessions cause more physiological stress to the body compared to cardiovascular exercise, even higher-intensity cardio intervals. However, it’s worth noting that overall exercise intensity is what makes the biggest impact on EPOC. So squats, deadlifts, and bench presses with heavy weights are going to be much more effective at raising EPOC compared to bicep curls and triceps extensions with light weights.
Without supplementation, approximately 14.6mmol (2g) of creatinine, creatine’s urinary metabolite, is lost on a daily basis in a standard 70kg male ages 20-39. The value is slightly lower in females and the elderly due to a presence of less muscle mass.[35] This amount is considered necessary to obtain in either food or supplemental form to avoid creatine deficiency. Requirements may be increased in people with higher than normal lean mass.[35][198] Creatine excretion rates on a daily basis are correlated with muscle mass, and the value of 2g a day is derived from the aforementioned male population with about 120g creatine storage capacity.[35] Specifically, the rate of daily creatine losses is about 1.6%[199]-1.7%,[25] and mean losses for women are approximately 80% that of men due to less average lean mass.[35] For weight-matched elderly men (70kg, 70-79 years of age) the rate of loss of 7.8mmol/day,[49] or about half (53%) that of younger men.
de Salles Painelli V, Alves VT, Ugrinowitsch C, et al. Creatine supplementation prevents acute strength loss induced by concurrent exercise. Eur J Appl Physiol 2014;114(8):1749-55.del Favero S, Roschel H, Artioli G, et al. Creatine but not betaine supplementation increases muscle phosphorylcreatine content and strength performance. Amino Acids 2012;42(6):2299-305. View abstract.
As mentioned, protein is essential for building muscle. If you are unable to consume the recommended amount of protein through diet alone, add protein powder for building muscle as a supplement. This applies to nearly anyone hoping to gain muscle mass since it’s not easy to pack in nearly 100 grams of protein a day through chicken, eggs and legumes alone.
A 2011 survey of 33 supplements commercially available in Italy found that over 50% of them exceeded the European Food Safety Authority recommendations in at least one contaminant. The most prevalent of these contaminants was creatinine, a breakdown product of creatine also produced by the body.[47] Creatinine was present in higher concentrations than the European Food Safety Authority recommendations in 44% of the samples. About 15% of the samples had detectable levels of dihydro-1,3,5-triazine or a high dicyandiamide concentration. Heavy metals contamination was not found to be a concern, with only minor levels of mercury being detectable. Two studies reviewed in 2007 found no impurities.[41]

A typical creatine supplementation protocol consists of a loading phase of 20 g CM/d or 0.3 g CM/kg/d split into 4 daily intakes of 5 g each, followed by a maintenance phase of 3-5 g CM/d or 0.03 g CM/kg/d for the duration of the supplementation period [5]. Other supplementation protocols are also used such as a daily single dose of around 3 – 6 g or between 0.03 to 0.1 g/kg/d [15,55] however this method takes longer (between 21 to 28 days) to produce ergogenic effects [5]. Sale et al [56] found that a moderate protocol consisting of 20 g CM taken in 1g doses (evenly ingested at 30-min intervals) for 5 days resulted in reduced urinary creatine and methylamine excretion, leading to an estimated increase in whole body retention of creatine (+13%) when compared with a typical loading supplementation protocol of 4 x 5 g/d during 5 days (evenly ingested at 3 hour intervals). This enhancement in creatine retention would lead to a significantly higher weight gain when people follow a moderate protocol ingestion of several doses of small amounts of CM evenly spread along the day.
How to maximize its effects: Take 20 grams of whey protein powder in the 30 minutes before working out, and take 40 grams within 60 minutes after training. Also consider taking 20-40 grams of whey immediately upon waking every morning to kick-start muscle growth. Your best bet is to choose a whey powder that contains whey protein hydrolysates (whey protein broken down into smaller fragments for faster digestion) or whey protein isolate.
Who makes it: Creapure HMB is made by Transparent Labs, one of the best companies in the sports nutrition industry. Transparent labs is all about, well, transparency! They always clearly list everything that goes into their products. They use pure, simple, and clinically proven ingredients to create products that get real results. Instead of relying on marketing gimmicks to sell their products, Transparent Labs relies on proven science and word-of-mouth. Transparent Labs has grown their business by providing the one ingredient seldom found in sports nutrition products: honesty.
The general strategy adopted by most present-day competitive bodybuilders is to make muscle gains for most of the year (known as the "off-season") and, approximately 12–14 weeks from competition, lose a maximum of body fat (referred to as "cutting") while preserving as much muscular mass as possible. The bulking phase entails remaining in a net positive energy balance (calorie surplus). The amount of a surplus in which a person remains is based on the person's goals, as a bigger surplus and longer bulking phase will create more fat tissue. The surplus of calories relative to one's energy balance will ensure that muscles remain in a state of anabolism.
One thing to keep in mind with this set is that it contains animal products from gelatin and milk. If you are vegan, do not consume these capsules. In terms of weight gain, it is important to note that these capsules do not contain calories. You need extra calories to gain weight. Above all, since this bulking stack requires you to take several pills daily, make sure to talk to your doctor before starting this supplement regimen.
What you eat plays a big role in how much muscle your body can build. Proteins are especially important for building muscle. When you eat protein, your body breaks it down into amino acids which are the building blocks of muscle. How much protein you should include in your diet depends on a number of factors including your age and muscle building goals. Older adults who engage in resistance training and those hoping for maximum muscle growth should eat 1 to 1.3 grams of protein per kg of body weight (2, 3). If you weigh 150 lbs, that means you should take between 68 and 88 g of protein daily. Other recommendations are more modest, suggesting that .36 grams of protein per pound of body weight is enough.
Cyclocreatine (1-carboxymethyl-2-iminoimidazolidine) is a synthetic analogue of creatine in a cyclic form. It serves as a substrate for the creatine kinase enzyme system, acting as a creatine mimetic. Cyclocreatine may compete with creatine in the CK enzyme system to transfer phosphate groups to ADP, as coincubation of both can reduce cyclocreatine’s anti-motility effects on some cancer cells.[96]
In vitro, creatine (0.125mM or higher) can reduce excitotoxicity from glutamate, which is thought to be secondary to preserving intracellular creatine phosphate levels.[209] Glutamate-induced excitotoxicity is caused by excessive intracellular calcium levels resulting from ATP depletion. Since high levels of calcium inside the cell are toxic, ATP preserves membrane integrity,[210] in part by promoting calcium homeostasis. When ATP is depleted, the sodium-potassium ATPase pump (Na+,K+-ATPase) stops working, leading to sodium accumulation in the cell. This reduces the activity of the sodium-calcium exchange pump, which, alongside a lack of ATP, reduces calcium efflux through the Na+,K+-ATPase. Thus, ATP depletion leads to intracellular calcium overload, loss of membrane potential, and excitotoxic cell death. Therefore, by helping preserve ATP levels, creatine is protective against excitotoxicity. This protective effect was noted after either creatine preloading or addition up to 2 hours after excitotoxicity.[209] Protection from glutamate-induced toxicity also extends to glial cells[211] and is additive with COX2 inhibition.[212]
Young adult athletes who reported creatine usage for over two years prior to the study (retrospective design) were not significantly different than controls.[501] Elsewhere, in a similar cohort of athletes reporting creatine usage for up to four years, failed to note significant differences in liver enzymes, although a nonsignificant reduction in LDH was noted.[502]
However, a much more accurate determination of how much fluid is necessary can be made by performing appropriate weight measurements before and after a typical exercise session, to determine how much fluid is lost during the workout. The greatest source of fluid loss during exercise is through perspiration, but as long as your fluid intake is roughly equivalent to your rate of perspiration, hydration levels will be maintained.[14]
Other areas of research include therapeutic uses of creatine to help patients with muscle wasting caused by disease states such as muscular dystrophy and amyotrophic lateral sclerosis (ALS). Small-scale preliminary studies show some gains in strength may be possible for these patients, which could improve their quality of life. One study of 81 patients with various neurologic diseases found that giving 10 g/day of creatine for five days, followed by 5 grams for another week, increases their muscle strength by about 10% [20]. Large-scale studies should be done before recommendations are made to such patients.

Another study demonstrated that females receiving 4 days of high-dose creatine intake (20 g/day) followed by low-dose creatine intake (5 g/day) during 10 weeks of resistance training (3hours/week) increased muscle PCr concentrations by 6%. Also, maximal strength of the muscle groups trained increased by 20-25%, maximal intermittent exercise capacity of the arm flexors increased by 10-25% and fat-free mass increased by 60% [11].
×