Walking, running, and swimming are examples of activity. Aerobic activity strengthens your heart and lungs. Stretching improves your flexibility. Strength training uses resistance, like free weights, weight machines, resistance bands, or a person's own weight, to build muscles and strength. Teens may want to strength train to improve sports performance, treat or prevent injuries, or improve appearance.
Without supplementation, creatine is formed primarily in the liver, with minor contributions from the pancreas and kidneys. The two amino acids, glycine and arginine, combine via the enzyme Arginine:Glycine amidinotransferase (AGAT) to form ornithine and guanidoacetate. This is the first of two steps in creatine synthesis, and although rare, any deficiency of this enzyme can result in mild mental retardation and muscular weakness.[28] AGAT is also the primary regulatory step, and an excess of dietary creatine can suppress activity of AGAT to reduce creatine synthesis[29] by reducing AGAT mRNA levels, rather than resulting in competitive inhibition.[30]
Getting comfortable with a steady running routine is definitely something to be proud of, but when you're on that cardio grind day-in and day-out, you might be ready to change things up and take on a new challenge. Time to throw some strength training into the mix. It can be a little intimidating at first if you don't know where the hell to start, but understanding the basics can help you feel confident in your refreshed fitness routine.
Hopefully I didn’t put a big damper on your Captain-America fueled dreams! I just want to set proper expectations so you don’t get discouraged with slow progress, and instead get SUPER encouraged with any progress. Getting strong should be freakin’ fun! Weirdly enough, once I stopped trying to get there quickly is when I started to actually make permanent progress.
Cribb et al (2007) [29] observed greater improvements on 1RM, lean body mass, fiber cross sectional area and contractile protein in trained young males when resistance training was combined with a multi-nutrient supplement containing 0.1 g/kg/d of creatine, 1.5 g/kg/d of protein and carbohydrate compared with protein alone or a protein carbohydrate supplement without the creatine. These findings were novel because at the time no other research had noted such improvements in body composition at the cellular and sub cellular level in resistance trained participants supplementing with creatine. The amount of creatine consumed in the study by Cribb et al was greater than the amount typically reported in previous studies (a loading dose of around 20 g/d followed by a maintenance dose of 3-5 g/d is generally equivalent to approximately 0.3 g/kg/d and 0.03 g/kg/d respectively) and the length of the supplementation period or absence of resistance exercise may explain the observed transcriptional level changes that were absent in previous studies [30,31].

You don’t have to, but you can. The typical creatine dose is 5 grams once or twice per day, but it’s sometimes suggested that one should “load” creatine by taking 20 to 25 grams per day for the first week of usage. This is then followed with 3 to 4 weeks of 5 grams per day, then a break for a week or two, then repeat. This may bring about more acute increases in strength and muscle size — creatine will “work” more quickly, in other words — but it’s not necessary.
Homocysteine is produced after S-adenosyl methionine is used up (as donating a methyl group creates S-adenosylhomocysteine, which then produces homocysteine) mostly from phosphatidylcholine synthesis[307] and its reduction (via either methylation from trimethylglycine via betaine:homocysteine methyltransferase, urinary excretion, or convertion into L-cysteine via cystathionine beta-synthase[308]) is thought to be therapeutic for cardiovascular diseases.
The failure of creatine to improve physical performance in these conditions is thought to be related to the myopathies in general, which are known to result in less phosphocreatine in skeletal muscle,[568] associated with reduced expression of the creatine transporter.[569] As creatine has once been noted to not accumulate in the skeletal muscle of people with DM1 given supplementation,[566] it is thought that the subjects did not respond to therapy.
In regard to liver fat buildup (steatosis), which is normally associated with reduced availability of S-adenosyl methionine[495][496] and a suppression in expression of genes involved in fatty acid oxidation (PPARα and CPT1), creatine supplementation at 1% of the rat diet alongside a diet that induces fatty liver is able to fully prevent (and nonsignificantly reduce relative to the control given standard diets) the aforementioned changes and the state of steatosis, as well as changes in serum biomarkers (glucose and insulin) that accompany steatosis.[125] 

HMB supplementation is claimed to build muscle size and strength and promote fat loss in conjunction with a strength program. Studies of HMB have shown some benefit to strength athletes in building muscle bulk but the benefits are relatively small and the cost of HMB is high. The effective dose seems to be 3 grams/day divided into 1 gram three times a day. Probably not worth taking. Beta-alanine is the new guy on the block and has not been evaluated sufficiently in my view. It may provide some advantage in high-intensity sports like weight training but it’s much too early to know that it does. Some early studies are flawed. Save your money or try creatine instead.

After supplementation of creatine monohydrate (loading phase, followed by 19 weeks maintenance), creatine precursors are decreased by up to 50% (loading) or 30% (maintenance), which suggests a decrease in endogenous creatine synthesis during supplementation.[38] This appears to occur through creatine’s own positive feedback and suppression of the l-arginine:glycine amidinotransferase enzyme, the rate-limiting step in creatine synthesis, as levels of intermediates before this stage are typically elevated by up to 75%.[38]
A thermogenic is a broad term for any supplement that the manufacturer claims will cause thermogenesis, resulting in increased body temperature, increased metabolic rate, and consequently an increased rate in the burning of body fat and weight loss. Until 2004 almost every product found in this supplement category comprised the "ECA stack": ephedrine, caffeine and aspirin. However, on February 6, 2004 the Food and Drug Administration (FDA) banned the sale of ephedra and its alkaloid, ephedrine, for use in weight loss formulas. Several manufacturers replaced the ephedra component of the "ECA" stack with bitter orange or citrus aurantium (containing synephrine) instead of the ephedrine.
Beach muscles and Olympic lifts draw more attention. But the many little stabilizer muscles around your shoulders, hips, and midsection — collectively the core — provide a strong foundation. Challenging the stability and mobility of these key muscles with medicine balls, physioballs, mini-bands, and rotational movements (lifting, chopping) pays huge dividends.
Research shows that strength training is especially effective at raising EPOC. That’s because, generally speaking, strength-training sessions cause more physiological stress to the body compared to cardiovascular exercise, even higher-intensity cardio intervals. However, it’s worth noting that overall exercise intensity is what makes the biggest impact on EPOC. So squats, deadlifts, and bench presses with heavy weights are going to be much more effective at raising EPOC compared to bicep curls and triceps extensions with light weights.