Every gym has a guy shaped like a lightbulb. He's the one who neglects his lower body. If you don't want to be that guy, work your major leg muscles on the leg press machine. Place your feet on the plate with knees bent at 90 degrees. Grasp the handles and slowly push the plate out until your knees are straight but not locked. Pause and slowly return to the starting spot.
A: Eat more frequently, drink less liquids while eating (they compete for stomach volume along with food), eat from larger plates and bowls, add lime or lemon juice to your water with meals (can help to increase production of hydrochloric acid that breaks down food), and consume more liquid calories (especially around the workout if appetite is suffering the rest of the day).
Cyclocreatine appears to be passively diffused through membranes and not subject to the creatine transporter, which can be beneficial for cases where creatine transporter function is compromised (creatine non-response and SLG6A8 deficiency). Similar to other forms of creatine, it buffers ATP concentrations, although its efficacy as a supplement in otherwise healthy people is currently unknown.

Why less volume for the smaller muscle groups, you ask? Partially because they are smaller, but mostly because they get a ton of indirect volume while training the bigger muscle groups (e.g. your biceps get hit pretty hard while training back, triceps get hit pretty hard while training chest and shoulders, shoulders get hit pretty hard while training chest, etc.).

There is a nuclear receptor known as TIS1 (orphan receptor, since there are no known endogeouns targets at this time) which positively influences transcription of new creatine transporters[171] and, in C2C12 myotubes, seems to be responsive to cAMP or adenyl cyclase stimulation from forskolin (from Coleus Forskohlii) with peak activation at 20µM.[171][172] 
Creatine is thought to improve strength, increase lean muscle mass, and help the muscles recover more quickly during exercise. This muscular boost may help athletes achieve bursts of speed and energy, especially during short bouts of high-intensity activities such as weight lifting or sprinting. However, scientific research on creatine has been mixed. Although some studies have found that it does help improve performance during short periods of athletic activity, there is no evidence that creatine helps with endurance sports. Research also shows that not everyone's muscles respond to creatine; some people who use it see no benefit.

A: Start with the calculations above but don’t be afraid to adjust up or down. Your metabolism and physiology will adapt to more food by trying to maintain homeostasis and regulate your bodyweight. Some may have to increase more than others but the number on the scale doesn’t lie. If it’s not going up, then you probably need to increase your calories.
After all, you’ve probably seen the countless workouts, diets, supplements, programs, products and people claiming that super fast muscle growth is possible. You’ve probably also seen the click-bait headlines (“How To Build 20lbs Of Muscle In Just 6 Weeks!”) and the unbelievable transformations of supposedly “natural” people (bodybuilders, celebrities, athletes, fitness gurus on social media, etc.) that clearly prove it can happen faster than this.
Heath suggests incorporating dropsets into your training routine by immediately decreasing the weight and repping out again to failure. “Dropsets overload the muscle with shorter rest periods and increasing volume which you need to grow,” says Heath. “That overload improves your body’s abilities to utilize more nutrients, natural growth hormone, and natural testosterone into those areas and makes the supplements you take more effective.” Heath’s favorite way to do dropsets is on a pin-loaded machine since it’s faster to switch weights.
Older women with knee osteoarthritis given supplemental creatine at 20g for five days followed by 5g for the rest of the twelve week trial experienced improvements in stiffness (52% reduction), pain (45%), and physical function (41%) as assessed by WOMAC, despite no improvements in physical power output relative to placebo.[425] This study paired supplementation and placebo with a mild exercise regimen.[425]

In regard to the blood brain barrier (BBB), which is a tightly woven mesh of non-fenestrated microcapillary endothelial cells (MCECs) that prevents passive diffusion of many water-soluble or large compounds into the brain, creatine can be taken into the brain via the SLC6A8 transporter.[192] In contrast, the creatine precursor (guanidinoacetate, or GAA) only appears to enter this transporter during creatine deficiency.[192] More creatine is taken up than effluxed, and more GAA is effluxed rather than taken up, suggesting that creatine utilization in the brain from blood-borne sources[192] is the major source of neural creatine.[193][192] However, “capable of passage” differs from “unregulated passage” and creatine appears to have tightly regulated entry into the brain in vivo[193]. After injecting rats with a large dose of creatine, creatine levels increased and plateaued at 70uM above baseline levels. These baseline levels are about 10mM, so this equates to an 0.7% increase when superloaded.[193] These kinetics may be a reason for the relative lack of neural effects of creatine supplementation in creatine sufficient populations.