The general sentiment among nutrition experts is that creatine monohydrate is, for most people, the best bet. It’s the cheapest form and more importantly, it’s the most well-researched. Hundreds of studies have been performed on creatine monohydrate and there’s no evidence of ill effects, whereas many of the more novel forms of creatine have one or sometimes no studies supporting them.
Without supplementation, creatine is formed primarily in the liver, with minor contributions from the pancreas and kidneys. The two amino acids, glycine and arginine, combine via the enzyme Arginine:Glycine amidinotransferase (AGAT) to form ornithine and guanidoacetate. This is the first of two steps in creatine synthesis, and although rare, any deficiency of this enzyme can result in mild mental retardation and muscular weakness.[28] AGAT is also the primary regulatory step, and an excess of dietary creatine can suppress activity of AGAT to reduce creatine synthesis[29] by reducing AGAT mRNA levels, rather than resulting in competitive inhibition.[30]
One study on 27 otherwise healthy men supplementing creatine (0.3g/kg loading for a week, 0.05g/kg thereafter for 8 weeks) with a thrice weekly exercise regiment noted that alongside greater increase in lean mass and power relative to placebo at 4 and 8 weeks, myostatin in serum decreased to a greater extent with creatine (around 17% at 8 weeks, derived from graph) than it did with placebo (approximately 7%).[356] Increases in GASP-1, a serum protein that inhibits the actions of myostatin by directly binding to it,[357] were not different between groups.[356]

Retinol (Vitamin A) B vitamins: Thiamine (B1) Riboflavin (B2) Niacin (B3) Pantothenic acid (B5) Pyridoxine (B6) Biotin (B7) Folic acid (B9) Cyanocobalamin (B12) Ascorbic acid (Vitamin C) Ergocalciferol and Cholecalciferol (Vitamin D) Tocopherol (Vitamin E) Naphthoquinone (Vitamin K) Calcium Choline Chromium Cobalt Copper Fluorine Iodine Iron Magnesium Manganese Molybdenum Phosphorus Potassium Selenium Sodium Sulfur Zinc


AAKG β-hydroxy β-methylbutyrate Carnitine Chondroitin sulfate Cod liver oil Copper gluconate Creatine/Creatine supplements Dietary fiber Echinacea Elemental calcium Ephedra Fish oil Folic acid Ginseng Glucosamine Glutamine Grape seed extract Guarana Iron supplements Japanese Honeysuckle Krill oil Lingzhi Linseed oil Lipoic acid Milk thistle Melatonin Red yeast rice Royal jelly Saw palmetto Spirulina St John's wort Taurine Wheatgrass Wolfberry Yohimbine Zinc gluconate
A study showed that 100mg/kg creatine monohydrate daily over four months supplemented by boys with DMD is able to enhance handgrip strength in the dominant hand only (less than 10% increase) and increase whole-body lean mass. While the trend toward whole body strength reduction seen in placebo was ablated and there was no interaction with corticosteroids,[560] this study failed to find an influence on activities of daily living or lung function.[560] Elsewhere in children not on corticosteroids with DMD, supplementation of 5g creatine for eight weeks was confirmed to increase muscular phosphocreatine content[554] and according to a manual muscle test (MMT) there was a significant improvement in muscular function relative to placebo, with more parents reporting benefit with creatine (53.8%) relative to placebo (14%).[554]

In regard to practical interventions, concurrent glycogen loading has been noted to increase creatine stores by 37-46% regardless of whether the tissue was exercised prior to loading phase.[176] It is important to note, however, that creatine levels in response to the creatine loading protocol were compared in one glycogen-depleted leg to the contralateral control leg, which was not exercised.[176] This does not rule out a possible systemic exercise-driven increase in creatine uptake, and the increase in creatine noted above[176] was larger than typically seen with a loading protocol (usually in the 20-25% range). Consistent with an exercise-effect, others have reported that exercise itself increases creatine uptake into muscle, reporting 68% greater creatine uptake in an exercised limb, relative to 14% without exercise.[153] 

Heart Failure is one of the single most common complications that face many people today. When a heart ages, the cells collect a yellow-brown layer which is waste and can lead to heart complications. This process is known as lipofuscin, or “aging pigment” which leads to death opposed to someone who can delay that as far as possible. [3] In mice, a study was performed where two groups of mice who had lipofuscin underwent different experiments, one group received creatine supplementation, and one group did not receive supplementation. What they found was that the mice who supplemented creatine lived 9% longer than the ones who did not receive creatine. 9% translated into human years results in almost 7 years, which could suggest that if you suffer from this deterioration, creatine supplementation could potentially increase your longevity by 7 years. [3]
Deldicque et al [32] found a 250%, 45% and 70% increase for collagen mRNA, glucose transporter 4 (GLUT4) and Myosin heavy chain IIA, respectively after 5 days creatine loading protocol (21 g/d). The authors speculated that creatine in addition to a single bout of resistance training can favor an anabolic environment by inducing changes in gene expression after only 5 days of supplementation.
Need the motivation to push past your comfort zone and squeeze out one more push-up or bicep curl? Sure, it helps to remember that you’ll get stronger, rock more toned muscles and rev your metabolism, thanks to all that added muscle mass. But if that wasn’t enough, now comes news that all that pump-itude (yes, that’s an SNL reference) has psychological benefits, too.
Another category of muscle-building supplements that lifters and bodybuilders use to improve their results are branched-chained amino acids (BCAAs), or BCAAs. Of the 20 amino acids that make up protein, just three are referred to as BCAAs: leucine, isoleucine, and valine. These are the specific amino acids that have been shown to stimulate protein synthesis and help regulate protein metabolism.
People sometimes walk up and touch him, as if unsure if he is a man or a machine. What they do not realize is that beneath the stony exterior and self-assuredness is a squishy sense of anxiety and vulnerability. Heath gets nervous every time he strips to his posing trunks. He is rarely satisfied with what he sees in the mirror. He is persistently worried about imperfections others might find, too.

Unfortunately, some people are intolerant to milk, due to the casein (one of the proteins in dairy) and have trouble digesting the sugar in milk, called lactose. If this is the case, stick to whey-only protein shakes. Maximuscle uses Biomax Whey True Protein - a unique blend of whey proteins including whey protein concentrate, isolate and hydrolysate, which are lower in lactose. Biomax Whey True Protein is used in a number of Maximuscle products (Promax and Cyclone).


^ Jump up to: a b c d Luckose F, Pandey MC, Radhakrishna K (2015). "Effects of amino acid derivatives on physical, mental, and physiological activities". Crit. Rev. Food Sci. Nutr. 55 (13): 1793–1807. doi:10.1080/10408398.2012.708368. PMID 24279396. HMB, a derivative of leucine, prevents muscle damage and increases muscle strength by reducing exercise-induced proteolysis in muscles and also helps in increasing lean body mass. ... The meta analysis studies and the individual studies conducted support the use of HMB as an effective aid to increase body strength, body composition, and to prevent muscle damage during resistance training.
Most folks work a 9 to 5 position but if you’re not in the corporate world yet then odds are you’re a student with classes scattered throughout the day and it takes up the vast portion of your free time. That being said, you’re likely going to have to work out in the morning or the evening in order to fit in your session amidst the hectic commitments in your everyday life. Here are a few things to consider in regards to each time period:
Although creatine supplementation has been shown to be more effective on predominantly anaerobic intermittent exercise, there is some evidence of its positive effects on endurance activities. Branch [28] highlights that endurance activities lasting more than 150s rely on oxidative phosphorylation as primary energy system supplier. From this meta analysis [28], it would appear that the ergogenic potential for creatine supplementation on predominantly aerobic endurance exercise diminishes as the duration of the activity increases over 150s. However it is suggested that creatine supplementation may cause a change in substrate utilization during aerobic activity possibly leading to an increase in steady state endurance performance.
One study on 27 otherwise healthy men supplementing creatine (0.3g/kg loading for a week, 0.05g/kg thereafter for 8 weeks) with a thrice weekly exercise regiment noted that alongside greater increase in lean mass and power relative to placebo at 4 and 8 weeks, myostatin in serum decreased to a greater extent with creatine (around 17% at 8 weeks, derived from graph) than it did with placebo (approximately 7%).[356] Increases in GASP-1, a serum protein that inhibits the actions of myostatin by directly binding to it,[357] were not different between groups.[356]
Another study tested male subjects performing two bouts of 30 second isokinetic cycling before and after ingesting 20 g creatine monohydrate daily for 5 days. Work production improved about 4%. Cumulative increases in both peak and total work production over the two exercise bouts were positively correlated with the increase in muscle creatine [14].
Kilduff, L. P., Georgiades, E., James, N., Minnion, R. H., Mitchell, M., Kingsmore, D., Hadjicharlambous, M., and Pitsiladis, Y. P. The effects of creatine supplementation on cardiovascular, metabolic, and thermoregulatory responses during exercise in the heat in endurance-trained humans. Int J Sport Nutr Exerc Metab 2004;14:443-460. View abstract.
Gordon, P. H., Cheung, Y. K., Levin, B., Andrews, H., Doorish, C., Macarthur, R. B., Montes, J., Bednarz, K., Florence, J., Rowin, J., Boylan, K., Mozaffar, T., Tandan, R., Mitsumoto, H., Kelvin, E. A., Chapin, J., Bedlack, R., Rivner, M., McCluskey, L. F., Pestronk, A., Graves, M., Sorenson, E. J., Barohn, R. J., Belsh, J. M., Lou, J. S., Levine, T., Saperstein, D., Miller, R. G., and Scelsa, S. N. A novel, efficient, randomized selection trial comparing combinations of drug therapy for ALS. Amyotroph.Lateral.Scler. 2008;9:212-222. View abstract.
Prohormones are precursors to hormones and are most typically sold to bodybuilders as a precursor to the natural hormone testosterone. This conversion requires naturally occurring enzymes in the body. Side effects are not uncommon, as prohormones can also convert further into DHT and estrogen. To deal with this, many supplements also have aromatase inhibitors and DHT blockers such as chrysin and 4-androstene-3,6,17-trione. To date most prohormone products have not been thoroughly studied, and the health effects of prolonged use are unknown. Although initially available over the counter, their purchase was made illegal without a prescription in the US in 2004, and they hold similar status in many other countries. They remain legal, however, in the United Kingdom and the wider European Union. Their use is prohibited by most sporting bodies.
×