In humans, studies that investigate links between serotonin and creatine supplementation find that 21 trained males, given creatine via 22.8g creatine monohydrate (20g creatine equivalent) with 35g glucose, relative to a placebo of 160g glucose, was found to reduce the perception of fatigue in hot endurance training, possibly secondary to serotonergic modulation, specifically attentuating the increase of serotonin seen with exercise (normally seen to hinder exercise capacity in the heat[233]) while possibly increasing dopaminergic activity (conversely seen to benefit activity in the heat[234]).[155]
A: The literature supports roughly 0.8-1 gram per pound of bodyweight in young adults. Can you eat more? As long as you have healthy, functioning kidneys, yes. Will you receive any further physiological benefit from it? Most likely, no. Not only that, since our calories are set, if we choose to overconsume protein then we must reduce either carbohydrates and/or fat in order to keep caloric expenditure within our set range. Once protein needs are met (~0.8-1g/lb of bodyweight) you will likely see greater benefits from higher carbohydrate consumptions given the influence they have on anabolism and the anaerobic energy pathway. However, as I mentioned above, these recommendations will differ for older trainees given the blunted anabolic response from the ingestion of amino acids.  

In recent years, the related areas of fitness and figure competition have increased in popularity, surpassing that of female bodybuilding, and have provided an alternative for women who choose not to develop the level of muscularity necessary for bodybuilding. McLish would closely resemble what is thought of today as a fitness and figure competitor, instead of what is now considered a female bodybuilder. Fitness competitions also have a gymnastic element to them. A study by the Clinical Journal of Sport Medicine found that female bodybuilders who are taking anabolic steroids are more likely to have qualified for substance dependence disorder, to have been diagnosed with a psychiatric illness, or to have a history of sexual abuse.[14]
These effects are secondary to creatine being a source of phosphate groups and acting as an energy reserve. The longer a cell has energy, the longer it can preserve the integrity of the cell membrane by preserving integrity of the Na+/K+-ATPase and Ca2+-ATPase enzymes.[241][235][236] Preserving ATP allows creatine to act via a nongenomic response (not requiring the nuclear DNA to transcribe anything), and appears to work secondary to MAPK and PI3K pathways.[226]
Creatine supplementation appears to attenuate decreases in GLUT4 expression seen with immobility and may increase GLUT4 expression during exercise. While it seems capable of increasing GLUT4 during resting conditions, it has failed to reach significance, suggesting that creatine supplementation works best with some stimuli associated with exercise.
Mercimek-Mahmutoglu, S., Stoeckler-Ipsiroglu, S., Adami, A., Appleton, R., Araujo, H. C., Duran, M., Ensenauer, R., Fernandez-Alvarez, E., Garcia, P., Grolik, C., Item, C. B., Leuzzi, V., Marquardt, I., Muhl, A., Saelke-Kellermann, R. A., Salomons, G. S., Schulze, A., Surtees, R., van der Knaap, M. S., Vasconcelos, R., Verhoeven, N. M., Vilarinho, L., Wilichowski, E., and Jakobs, C. GAMT deficiency: features, treatment, and outcome in an inborn error of creatine synthesis. Neurology 8-8-2006;67(3):480-484. View abstract.
Of the three, protein will of course play the most important role in the muscle building process (like calories, it’s one our required “supplies”), although fat and carbs will still be important for other reasons which range from optimizing hormone production (e.g. testosterone, the muscle building hormone) to enhancing training performance and recovery.
I was building up, bulking, going after the mass, which to me meant 230 pounds of sheer body weight. At that time, I didn’t care about my waist or anything else that would give me a symmetrical look. I just wanted to build a gigantic 250-pound body by handling a lot of weight and blasting my muscles. My mind was into looking huge, into being awesome and powerful. I saw it working. My muscles began bursting out all over. And I knew I was on my way.”

Research shows that strength training is especially effective at raising EPOC. That’s because, generally speaking, strength-training sessions cause more physiological stress to the body compared to cardiovascular exercise, even higher-intensity cardio intervals. However, it’s worth noting that overall exercise intensity is what makes the biggest impact on EPOC. So squats, deadlifts, and bench presses with heavy weights are going to be much more effective at raising EPOC compared to bicep curls and triceps extensions with light weights.
Chin-Ups. The chin-up is the easiest way to determine someone’s relative strength. If you can knock out sets of bench with your bodyweight but can’t perform at least 5 bodyweight chin-ups then it’s time to re-evaluate your priorities. Chin-ups are an excellent mass builder for the lats, biceps, and upper back so they should take the place of machine variations like lat pulldowns whenever possible.

Don’t get us wrong—cardio is important for keeping your body fat down and keeping your heart health in check. (Bonus points if you run or bike, since outdoor exercise is linked to better energy and improved mental health.) But when it comes to building muscle, hitting the treadmill won't help you much. “Every component of exercise, minus cardio, can help with muscle hypertrophy,” which is the scientific term for muscle building, says Michelle Lovitt, an exercise physiologist and trainer in Los Angeles. “Cardio tends to burn calories and puts your body in a deficit, which is great for leaning out, but not building mass.”

Moving through repetitions too quickly, going too fast; there is nothing gained by lifting weights fast. Some of the perks of lifting weight in a slow and controlled manner, include more total muscle tension and force produced, more muscle-fiber activation both slow and fast twitch fibers, and less tissue trauma. Remember, a joint is only as strong as the muscles that cross it; if you haven't lifted in a long time, or ever, be careful what you ask of your joints.

It is equally important, if not more so, to ensure that you supply your body with more protein than it is breaking down each day. Your body uses protein for many things daily, and when you are working out, your body may start to break down proteins to provide extra energy. But your body also requires proteins to create new muscle cells and repair damaged ones. Many bodybuilding supplements contain large amounts of protein to ensure that your body has plenty for all required processes. Jump to Our 10 Best Bodybuilding Supplement List
The US FDA reports 50,000 health problems a year due to dietary supplements [14] and these often involve bodybuilding supplements.[15] For example, the "natural" best-seller Craze, 2012's "New Supplement of the Year" by, widely sold in stores such as Walmart and Amazon, was found to contain N,alpha-Diethylphenylethylamine, a methamphetamine analog.[16] Other products by Matt Cahill have contained dangerous substances causing blindness or liver damage, and experts say that Cahill is emblematic for the whole industry.[17]
If you have been training properly for at least three years, you’ll find that advanced pump-enhancing techniques like rest-pause sets, drop sets, and some of the other old-school bodybuilding techniques you’ve no doubt heard of can be effective when used sparingly. Just be sure not to overdo the use of them. And never get away from the most important rule: setting PR’s to get stronger.
In regard to the blood brain barrier (BBB), which is a tightly woven mesh of non-fenestrated microcapillary endothelial cells (MCECs) that prevents passive diffusion of many water-soluble or large compounds into the brain, creatine can be taken into the brain via the SLC6A8 transporter.[192] In contrast, the creatine precursor (guanidinoacetate, or GAA) only appears to enter this transporter during creatine deficiency.[192] More creatine is taken up than effluxed, and more GAA is effluxed rather than taken up, suggesting that creatine utilization in the brain from blood-borne sources[192] is the major source of neural creatine.[193][192] However, “capable of passage” differs from “unregulated passage” and creatine appears to have tightly regulated entry into the brain in vivo[193]. After injecting rats with a large dose of creatine, creatine levels increased and plateaued at 70uM above baseline levels. These baseline levels are about 10mM, so this equates to an 0.7% increase when superloaded.[193] These kinetics may be a reason for the relative lack of neural effects of creatine supplementation in creatine sufficient populations.