Genetic deficiencies in the creatine biosynthetic pathway lead to various severe neurological defects.[26] Clinically, there are three distinct disorders of creatine metabolism. Deficiencies in the two synthesis enzymes can cause L-arginine:glycine amidinotransferase deficiency caused by variants in GATM and guanidinoacetate methyltransferase deficiency, caused by variants in GAMT. Both biosynthetic defects are inherited in an autosomal recessive manner. A third defect, creatine transporter defect, is caused by mutations in SLC6A8 and inherited in a X-linked manner. This condition is related to the transport of creatine into the brain.[27]

Beta-alanine is a naturally occurring non-essential amino acid that comes into the body through foods that are rich in protein. The performance-enhancing aspect of beta-alanine (BA) is due to its ability to increase intra-muscular levels of carnosine. Increasing beta-alanine through supplementation may raise carnosine levels by over 60 percent in as quickly as four weeks.[6]

Synthesis primarily takes place in the kidney and liver, with creatine then being transported to the muscles via the blood. The majority of the human body's total creatine and phosphocreatine stores is located in skeletal muscle, while the remainder is distributed in the blood, brain, and other tissues.[17][18][20] Typically, creatine is produced endogenously at an estimated rate of about 8.3 mmol or 1 gram per day in young adults.[16][17] Creatine is also obtained through the diet at a rate of about 1 gram per day from an omnivorous diet.[17][18] Some small studies suggest that total muscle creatine is significantly lower in vegetarians than non-vegetarians, as expected since foods of animal origin are the primary source of creatine. However, subjects happened to show the same levels after using supplements.[21]