Heart Failure is one of the single most common complications that face many people today. When a heart ages, the cells collect a yellow-brown layer which is waste and can lead to heart complications. This process is known as lipofuscin, or “aging pigment” which leads to death opposed to someone who can delay that as far as possible. [3] In mice, a study was performed where two groups of mice who had lipofuscin underwent different experiments, one group received creatine supplementation, and one group did not receive supplementation. What they found was that the mice who supplemented creatine lived 9% longer than the ones who did not receive creatine. 9% translated into human years results in almost 7 years, which could suggest that if you suffer from this deterioration, creatine supplementation could potentially increase your longevity by 7 years. [3] 

A muscle imbalance—when one muscle is stronger than its opposing muscle—can limit your ability to exercise effectively, and could lead to injury down the line. “It’s important to recognize whether you’re really working the muscles you think you are and recognize if you’ve developed an imbalance that alters your movement pattern,” says Eric Ingram, physical therapist at Louisiana Physical Therapy Centers of Pineville. One common imbalance in women is stronger quads and weaker, tighter hamstrings, thanks to prolonged sitting, high heels, and improper training. If you suspect you have a muscle imbalance, make an appointment with a physical therapist, who will prescribe exercises to even you out.
Duchenne’s Muscular Dystrophy (DMD) is associated with a reduction in intracellular creatine stores[554] known to only affects males. It is an X-linked progressive myopathy associated with abnormalities in the dystrophin gene.[555] The standard therapy at this moment involves corticosteroids such as prednisone.[556][557] Creatine is thought to be therapeutic since the known targetable abnormalities in DMD (impairment in protein synthesis associated with oxidative stress and increased protein breakdown) is a property of creatine and supplementation showed promise in the first case study[558] and benefit in a group of mixed dystrophinopathies.[559]
After all, if you’re doing more reps in a set, the weight would obviously be lighter and the intensity level lower. If you’re doing fewer reps in a set, the weight is obviously heavier and the intensity is higher. In addition, how close you come to reaching failure – aka the point in a set when you are unable to complete a rep – also plays a role here.

The benefits of weight training overall are comparable to most other types of strength training: increased muscle, tendon and ligament strength, bone density, flexibility, tone, metabolic rate, and postural support. This type of training will also help prevent injury for athletes. There are benefits and limitations to weight training as compared to other types of strength training. Contrary to popular belief, weight training can be beneficial for both men and women.
Research shows that strength training is especially effective at raising EPOC. That’s because, generally speaking, strength-training sessions cause more physiological stress to the body compared to cardiovascular exercise, even higher-intensity cardio intervals. However, it’s worth noting that overall exercise intensity is what makes the biggest impact on EPOC. So squats, deadlifts, and bench presses with heavy weights are going to be much more effective at raising EPOC compared to bicep curls and triceps extensions with light weights.
Another study found that one week of creatine supplementation at 25 g/day enhanced muscular performance during repeated sets of bench press and jump squat exercise. Creatine supplementation appeared to allow the subjects to complete their workouts at a higher intensity. The researchers concluded that, over time, working at higher intensities may provide a more intense training stimulus and improved muscular adaptations [10].
Objective: Are you getting stronger? Increasing either weight or reps? If you're measuring individual markers on a daily basis like vertical jump, grip strength, or resting heart rate then what sort of trends are you noticing in these variables? If they're staying the same while your strength is increasing, then you're recovering well. If they're decreasing and you find yourself weaker over time then you're not recovering well.
Preparation – If you have physique or aesthetic goals then you’re going to have monitor your nutrition. That being said, it will require a bit of work to prepare some healthy meals and ensuring you’re getting enough calories. Not only that, you must approach training in the same way. If you don’t have your gym bag essentials prepped, you’ll end up wasting time looking for your belt and wrist wraps which should already be packed.
CONDITIONS OF USE AND IMPORTANT INFORMATION: This information is meant to supplement, not replace advice from your doctor or healthcare provider and is not meant to cover all possible uses, precautions, interactions or adverse effects. This information may not fit your specific health circumstances. Never delay or disregard seeking professional medical advice from your doctor or other qualified health care provider because of something you have read on WebMD. You should always speak with your doctor or health care professional before you start, stop, or change any prescribed part of your health care plan or treatment and to determine what course of therapy is right for you.
Weight training aims to build muscle by prompting two different types of hypertrophy: sarcoplasmic and myofibrillar. Sarcoplasmic hypertrophy leads to larger muscles and so is favored by bodybuilders more than myofibrillar hypertrophy, which builds athletic strength. Sarcoplasmic hypertrophy is triggered by increasing repetitions, whereas myofibrillar hypertrophy is triggered by lifting heavier weight.[23] In either case, there is an increase in both size and strength of the muscles (compared to what happens if that same individual does not lift weights at all), however, the emphasis is different.
The majority of creatine in the human body is in two forms, either the phosphorylated form making up 60% of the stores or in the free form which makes up 40% of the stores. The average 70 kg young male has a creatine pool of around 120-140 g which varies between individuals [10,11] depending on the skeletal muscle fiber type [1] and quantity of muscle mass [11]. The endogenous production and dietary intake matches the rate of creatinine production from the degradation of phosphocreatine and creatine at 2.6% and 1.1%/d respectively. In general, oral creatine supplementation leads to an increase of creatine levels within the body. Creatine can be cleared from the blood by saturation into various organs and cells or by renal filtration [1].
Creatine is a natural source of energy for muscle contraction. The body produces creatine in the liver, kidneys, and pancreas. People can also get creatine by eating meat or fish. (Vegetarians may have lower amounts of creatine in their bodies.) Most of the creatine in the body is stored in skeletal muscle and used during physical activity. The rest is used in the heart, brain, and other tissues.
Casein, the source of the white color of milk, accounts for 70-80% of milk protein. Casein exists in what’s known as a micelle, a compound similar to a soap sud which has a water-averse inside and water-loving outside. This property allows the protein to provide a sustained, slow release of amino acids into the blood stream, sometimes lasting for hours. This makes casein a good protein source immediately before a workout to provide a continual amino acid supply to the muscles. Some studies suggest that combined supplementation with casein and whey offers the greatest muscular strength improvement (Kerksick, 2006).
Prohormones are precursors to hormones and are most typically sold to bodybuilders as a precursor to the natural hormone testosterone. This conversion requires naturally occurring enzymes in the body. Side effects are not uncommon, as prohormones can also convert further into DHT and estrogen. To deal with this, many supplements also have aromatase inhibitors and DHT blockers such as chrysin and 4-androstene-3,6,17-trione. To date most prohormone products have not been thoroughly studied, and the health effects of prolonged use are unknown. Although initially available over the counter, their purchase was made illegal without a prescription in the US in 2004, and they hold similar status in many other countries. They remain legal, however, in the United Kingdom and the wider European Union. Their use is prohibited by most sporting bodies.

In regard to practical interventions, concurrent glycogen loading has been noted to increase creatine stores by 37-46% regardless of whether the tissue was exercised prior to loading phase.[176] It is important to note, however, that creatine levels in response to the creatine loading protocol were compared in one glycogen-depleted leg to the contralateral control leg, which was not exercised.[176] This does not rule out a possible systemic exercise-driven increase in creatine uptake, and the increase in creatine noted above[176] was larger than typically seen with a loading protocol (usually in the 20-25% range). Consistent with an exercise-effect, others have reported that exercise itself increases creatine uptake into muscle, reporting 68% greater creatine uptake in an exercised limb, relative to 14% without exercise.[153]


According to the abstract, in the stratified analyses by forms of aerobic exercise, weekly resistance exercise of 1 time or 1-59 minutes was associated with lower risks of total cardiovascular events and cardiovascular disease, regardless of meeting the aerobic exercise guidelines. The analysis showed that resistance training reduced the risk of cardiovascular events in 2 ways: training had a direct association with cardiovascular risk, and resistance training indirectly lowered cardiovascular risk by decreasing body mass index.
×