Creatine concentration is normally increased in the placenta and brain in the midgestation phase until term, with further increases in the brain for another two weeks after birth.[529] This effect appears to be due to the fetus itself expressing the creatine enzymes of synthesis (AGAT and GAMT) after 5% of the gestation time has passed (0.9 days in spiny mice).[529] Despite creatine normally suppressing AGAT when supplemented at high concentrations,[29][30] it appears that maternal supplementation of the diet with 5% creatine from the halfway point of pregnancy until term does not alter creatine synthesis in the newborn (no alterations in either AGAT or GAMT), nor does it affect the creatine transporter.[530] 
By that logic, a 160-pound man should consume around 160 grams of protein a day—the amount he'd get from an 8-ounce chicken breast, 1 cup of cottage cheese, a roast-beef sandwich, two eggs, a glass of milk, and 2 ounces of peanuts.) If you don't eat meat for ethical or religious reasons, don't worry — you can count on other sources, too. Soy, almonds, lentils, spinach, peas, and beans are packed with protein.
In muscle cells, the creatine transporter is predominantly localized to the sarcolemmal membrane. Western blot analysis of creatine transporter expression revealed the presence of two distinc protein bands, migrating at 55kDa and 70kDa on reducing SDS-PAGE gels.[147][148] The 73kDa band has been reported to be the predominant band in humans, with no differences based on gender.[148] A more recent report demonstrated that the 55kDa creatine transporter variant is glycosylated, forming the 73 kDa protein. Therefore, the 55 and 75kDa protein bands are actually immature and mature/processed forms of the creatine transporter protein, respectively.[149]
Under most circumstances, sports drinks do not offer a physiological benefit over water during weight training.[18] However, high-intensity exercise for a continuous duration of at least one hour may require the replenishment of electrolytes which a sports drink may provide.[19] Some may maintain that energy drinks, such as Red Bull that contain caffeine, improve performance in weight training and other physical exercise, but in fact, these energy drinks can cause dehydration, tremors, heat stroke, and heart attack when consumed in excess.[20] 'Sports drinks' that contain simple carbohydrates & water do not cause ill effects, but are most likely unnecessary for the average trainee. More recently, people have been taking pre-workout before working out to increase performance. The main ingredients in these pre-workouts are: beta-alanine, creatine, BCAAs (branched chain amino acids) and caffeine.[21]

Foundational supplements are often overlooked for building muscle, because they work behind the scenes. In actuality, foundational supplements are important to take for building muscle, because they assist with overall health and wellness and contribute to the effectiveness of other muscle building supplements.* Some of the top foundational supplements are:
Although creatine can be bought commercially as a standalone product it is often found in combination with other nutrients. A prime example is the combination of creatine with carbohydrate or protein and carbohydrate for augmenting creatine muscle retention [5] mediated through an insulin response from the pancreas [69]. Steenge et al [70] found that body creatine retention of 5 g CM was increased by 25% with the addition of 50 g of protein and 47 g of carbohydrate or 96 g carbohydrate when compared to a placebo treatment of 5 g carbohydrate. The addition of 10g of creatine to 75 g of dextrose, 2 g of taurine, vitamins and minerals, induced a change in cellular osmolarity which in addition to the expected increase in body mass, seems to produce an up regulation of large scale gene expression (mRNA content of genes and protein content of kinases involved in osmosensing and signal transduction, cytoskeleton remodelling, protein and glycogen synthesis regulation, satellite cell proliferation and differentiation, DNA replication and repair, RNA transcription control, and cell survival) [25]. Similar findings have also been reported for creatine monohydrate supplementation alone when combined with resistance training [71].

When you’re planning your high-protein meals, 20 grams of protein is the optimal amount generally accepted for muscle growth. Research has found that the body doesn’t use much more than 20 grams for muscle-building at any one sitting. Around 80 grams of protein per day (or, four meals containing 20-grams of protein each) is about right for most people.

Studies have deemed staying in the range of 3 to 5 g per day range for maintenance to be safe, and while higher levels have been tested under acute conditions without adverse effects, there isn’t sufficient evidence to determine long-term safety. (8) If you’re interested in upping your creatine consumption, you should work with your doctor or dietitian to make sure it's right for your goals and health history.
Due to this relative deficiency-state in vegetarians and vegans, some aspects of creatine supplementation are seen as more akin to normalizing a deficiency, rather than providing the benefits of supplementation. In young vegetarians, but not omnivores, creatine supplementation can enhance cognition.[60][61] The increased gain in lean mass may be more significant in vegetarians, relative to omnivores.[59] Supplementation of creatine in vegetarians appears to normalize the gap in storage between vegetarians and omnivores.[62] This is possibly related to a correlation seen in survey research, where vegetarianism and veganism appear to be more commonly affected by some mental disorders like anxiety and depression.[63]
Creatine supplementation appears to be somewhat similar to TMG supplementation in the sense that they both promote localized synthesis of phosphatidylcholine, effluxing triglycerides from the liver into serum and thus potently protecting from diet-induced fatty liver. The concentration at which this occurs is within the range supplemented by humans.
Creatine helps create essential adenosine triphosphate (ATP). This is the energy source of muscle contractions. By upping your levels, you can increase the amount of energy available to your muscles, boosting your performance. Because your muscle strength and size increases when you add weight and reps, improving your performance can be a game changer in terms of increasing your muscle mass. If you’re able to lift longer and harder, your muscles will grow. Creatine is certainly a winner among muscle building supplements.
When lifting to complete fatigue, it takes an average of two to five minutes for your muscles to rest for the next set. When using lighter weight and more repetitions, it takes between 30 seconds and a minute for your muscles to rest. For beginners, working to fatigue isn't necessary, and starting out too strong can lead to too much post-exercise soreness.

Do Belgian squats (or "single leg squats") with a dumbbell. Hold out in front of your chest a dumbbell using both hands. Standing in front of a bench, lift your right leg back so that it's parallel to the floor and resting comfortably on the bench. Bend into a squat using the left leg, so that the right knee almost hits the floor. Lift and repeat 3 x 8. Repeat using opposite leg.
When you're in the middle of a strength-training session and something doesn't feel right to you, you feel pain, or if you hear or feel a "pop" during a workout, stop what you're doing. Have a doctor check it out before you go back to training. You may need to change your training or even stop lifting weights for a while to allow the injury to heal.
There is a genetic condition known as gyrate atrophy of the choroid and retina, which is associated with a high level of Ornithine in the blood and a relative decrease in Arginine, which causes a relative creatine deficiency due to L-arginine being required to make creatine[478][479] and because high ornithine can suppress creatine synthesis (AGAT) in the glial cells of the retina.[475] This condition can be attenuated by either reducting ornithine in the diet[480] or by supplementing creatine, which is, in this instance, therapeutic.[481][482]
The major controversies regarding creatine are its side effects and the best form to use. Nearly all side effects attributed to creatine, such as muscle cramps, kidney disease and gastrointestinal disturbances, haven't proved significant under controlled scientific scrutiny. Although various claims are made for a variety of creatine supplements, creatine monohydrate, which is 99 percent absorbed, is the best form to use.
In the last week leading up to a contest, bodybuilders usually decrease their consumption of water, sodium, and carbohydrates, the former two to alter how water is retained by the body and the latter to reduce glycogen in the muscle. The day before the show, water is removed from the diet, and diuretics may be introduced, while carbohydrate loading is undertaken to increase the size of the muscles through replenishment of their glycogen. The goal is to maximize leanness and increase the visibility of veins, or "vascularity". The muscular definition and vascularity are further enhanced immediately before appearing on stage by darkening the skin through tanning products and applying oils to the skin to increase shine. Some competitors will eat sugar-rich foods to increase the visibility of their veins. A final step, called "pumping", consists in performing exercises with light weights or other kinds of low resistance (for instance two athletes can "pump" each other by holding a towel and pulling in turn), just before the contest, to fill the muscles with blood and further increase their size and density.
It’s perhaps best known for the aesthetic benefits. Creatine increases muscle size relatively quickly and while that’s in part due to an increase in muscle water content — a good thing, since it means we’re better hydrated — it does indeed appear to lead to actual hypertrophy over time. And bigger muscles aren’t just aesthetic: larger muscles can improve work capacity, explosiveness, fat oxidation, injury resilience, and recovery.
This period also saw the rise of anabolic steroids in bodybuilding and many other sports. In bodybuilding lore, this is partly attributed to the rise of "mass monsters", beginning with Arnold Schwarzenegger, Sergio Oliva, and Lou Ferrigno in the late 1960s and early 1970s, and continuing through the 1980s with Lee Haney, the 1990s with Dorian Yates, Ronnie Coleman, and Markus Rühl, and up to the present day. Bodybuilders such as Greg Kovacs attained mass and size never seen previously but were not successful at the pro level. Others were renowned for their spectacular development of a particular body part, like Tom Platz or Paul Demayo for the leg muscles. At the time of shooting Pumping Iron, Schwarzenegger (while never admitting to steroid use until long after his retirement) said that "you have to do anything you can to get the advantage in competition".[citation needed] He would later say that he does not regret using anything.[8]
Carbohydrates provide quick energy in an anaerobic environment (high-intensity exercise), while fats provide sustained energy during periods of high oxygen availability (low-intensity exercise or rest). The breakdown of carbohydrates, fats, and ketones produces ATP (adenosine triphosphate). When cells use ATP for energy, this molecule is converted into adenosine diphosphate (ADP) and adenosine monophosphate (AMP). Creatine exists in cells to donate a phosphate group (energy) to ADP, turning this molecule back into ATP.[20][21][22][23]
Muscle imbalances are quite common among strength athletes and are arguably the most common cause of their injuries. Many times this is due to a “weak link” in the kinetic chain of muscles that activate during their activity. Identifying the “weak” muscle and being able to feel, isolate and contract that “weak” muscle makes correctional exercise and rehab much easier. Bodybuilding training, with its focus on “feel” rather than movement, helps to train and develop the mind to muscle connection. This comes in handy when you need to train a muscle imbalance with correctional exercise and, in the case of injury, for rehab.
The synthesis of creatine (from guanidinoacetate via GAMT) also requires SAMe as a cofactor and is implicated in homocysteine production. While supplementation of guanidinoacetate at 0.36% (prior to SAMe) can increase homocysteine by up to 50% in rats, supplementation of creatine (0.4%) is able to suppress homocysteine by up to 25%, secondary to reducing creatine synthesis,[309] and has been replicated elsewhere with 2% of the rat diet, while a loading phase did not alter the benefits.[124]
Most people require around 20 calories per pound (or 44 kcal / kg) of bodyweight to gain muscle mass. Using a 180-pound (82kg) male as an example, the required daily calorie intake is 3600 calories (20 kcal x 180 lb = 3600 kcal). When it comes to gaining weight, it is likely that you may put on a few pounds of fat along the way, but if you do find your body fat increasing, either increase the amount of aerobic exercise (moderate intensity) you are doing or slightly reduce the total number of calories you are consuming. Remember you can’t force feed muscle gain!
^ Jump up to: a b c Brioche T, Pagano AF, Py G, Chopard A (April 2016). "Muscle wasting and aging: Experimental models, fatty infiltrations, and prevention". Mol. Aspects Med. 50: 56–87. doi:10.1016/j.mam.2016.04.006. PMID 27106402. In conclusion, HMB treatment clearly appears to be a safe potent strategy against sarcopenia, and more generally against muscle wasting, because HMB improves muscle mass, muscle strength, and physical performance. It seems that HMB is able to act on three of the four major mechanisms involved in muscle deconditioning (protein turnover, apoptosis, and the regenerative process), whereas it is hypothesized to strongly affect the fourth (mitochondrial dynamics and functions). Moreover, HMB is cheap (~30– 50 US dollars per month at 3 g per day) and may prevent osteopenia (Bruckbauer and Zemel, 2013; Tatara, 2009; Tatara et al., 2007, 2008, 2012) and decrease cardiovascular risks (Nissen et al., 2000). For all these reasons, HMB should be routinely used in muscle-wasting conditions especially in aged people. ... 3 g of CaHMB taken three times a day (1 g each time) is the optimal posology, which allows for continual bioavailability of HMB in the body (Wilson et al., 2013).