Spillane M, Schoch R, Cooke M, Harvey T, Greenwood M, Kreider R, Willoughby DS. The effects of creatine ethyl ester supplementation combined with heavy resistance training on body composition, muscle performance, and serum and muscle creatine levels. J Int Soc Sports Nutr. 2009;6:6. doi: 10.1186/1550-2783-6-6. [PMC free article] [PubMed] [CrossRef]
Ballistic training incorporates weight training in such a way that the acceleration phase of the movement is maximized and the deceleration phase minimized; thereby increasing the power of the movement overall. For example, throwing a weight or jumping whilst holding a weight. This can be contrasted with a standard weight lifting exercise where there is a distinct deceleration phase at the end of the repetition which stops the weight from moving.[40]
2-4 Minutes Rest: Ideal for “tension exercises,” which includes most primary compound exercises. I personally take 3 minutes for the big stuff, sometimes going into the 3-4 minute range depending on exactly what I’m doing and what I feel like I need at the time. Since making strength gains is the main focus of these exercises, longer rest periods like this will be optimal for making it happen.
Yes, genetically some of us put on muscle faster than others, but even then it’s fractions of a degree, not DRASTIC sweeping differences. We tend to get this question from men or women who are so thin and have such fast metabolisms, they probably need to put on 40-50+ pounds of both fat and muscle, before they would ever even think to use the word “too bulky.”

This cellular influx may also decrease protein oxidation rates, which leads to increases in nitrogen balance and indirectly increases muscle mass.[379] This lowering of protein oxidation is from signaling changes caused vicariously through cell swelling[380][381] and appears to upregulate 216 genes[378] in a range of 1.3 to 5-fold increases, with the largest increase seen in the protein involved in satellite cell recruitment, sphingosine kinase-1. Most importantly for muscle hypertrophy, the protein content of PKBa/Akt1, p38 MAPK, and ERK6 increased 2.8+/-1.2 fold.[378] Sixty-nine genes are also downregulated after creatine supplementation, to less notable degrees.
So, for example, with the moves above you'd do 15 squats followed by 15 push-ups. Take a little breather then repeat that two more times. Then you move on to your walking lunges and lat pull-downs (and repeat those three times total, too). You can really do anywhere from eight reps to 15 (and even just two sets, if you don't have time for three), but "it’s not a bad idea for beginners to start with a 15-rep range to get comfortable with the exercises," says Davis. And while there's some debate over whether three sets of an exercise is really best, "it’s a great beginner model," says Davis. Don't overcomplicate things when you're just getting started.
After your standard whey protein powder, creatine may be the most popular sports supplement on Earth, and with good reason. A lot of supplements out there have a few promising studies suggesting they may improve some aspect of performance. Creatine has hundreds of them, and study after study has shown that among most people (a small percentage of are non-responders) it can have a significant effect on several areas of performance.
In addition to improving athletic performance and muscle strength, creatine is taken by mouth for creatine deficiency syndromes that affect the brain, aging, bone density, chronic obstructive pulmonary disease (COPD), congestive heart failure (CHF), depression, diabetes, exercise tolerance, fibromyalgia, Huntington's disease, disease that cause inflammation in the muscles (idiopathic inflammatory myopathies), Parkinson's disease, diseases of the muscles and nerves, multiple sclerosis, muscle atrophy, muscle cramps, breathing problems in infants while sleeping, head trauma, Rett syndrome, an eye disease called gyrate atrophy, inherited disorders that affect the senses and movement, schizophrenia, muscle breakdown in the spine, and recovery from surgery. It is also taken by mouth to slow the worsening of amyotrophic lateral sclerosis (ALS, Lou Gehrig's disease), osteoarthritis, rheumatoid arthritis, McArdle's disease, and for various muscular dystrophies.
Nephrectomized rats may have significantly reduced creatine synthesis rates[509] via impairment of methylation (the GAMT enzyme)[510] although creatine reuptake from the urine seems unimpaired.[511] Supplemental creatine in a rat model of 2/3rds nephrectomy (2% creatine in the diet) does not appear to negatively influence kidney function as assessed by the serum biomarkers of cystatin C and urinary protein or creatinine clearance rates.[512] Elsewhere, 2% creatine in the diet in rats for two weeks again failed to show negative effects on kidney function, but showed benefit in reducing homocysteine in late-stage uremic rats.[312] While there is not much human evidence for the rat nephrectomy model, a lone case study in a man with a single kidney failed to find an impairing effect of creatine (20g daily for five days and 5g for another month) in conjunction with a high protein diet.[513]
Although creatine is a natural component of food, the amount of food required to supersaturate the muscle with PCr may not be feasible. For example, it could require 22 pounds of meat daily [8]. If creatine monohydrate is proven to be a safe and effective ergogenic aid, creatine supplementation may be the simplest way to increasing muscle stores. It may be beneficial to avoid caffeine if taking creatine supplements. One study showed that caffeine diminished strength gains seen with creatine use [9].

In addition to being potentially harmful, some have argued that there is little evidence to indicate any benefit to using bodybuilding protein or amino acid supplements. "In view of the lack of compelling evidence to the contrary, no additional dietary protein is suggested for healthy adults undertaking resistance or endurance exercise".[18] In dispute of this, one more recent meta-analysis concluded that for athletes participating in resistance exercise training and consuming protein supplements for an average of 13 weeks, total protein intake up to 1.6 g per kg body weight per day would result in an increase in strength and fat-free mass, i.e. muscle, but that higher intakes would not further contribute. The muscle mass increase was statistically significant but modest - averaging 0.3 for all trials and 1.0 to 2.0 kg, for protein intake ≥ 1.6 g/kg/day.[3]
I’m glad you found some good information from this article. For any of these supplements, I would suggest talking to your doctor and pharmacist. I would suggest thinking about why you are interested in taking testosterone. Are you looking to increase muscle size? Bulk up? Knowing your fitness goals will help you determine which products are appropriate for you.
However, a much more accurate determination of how much fluid is necessary can be made by performing appropriate weight measurements before and after a typical exercise session, to determine how much fluid is lost during the workout. The greatest source of fluid loss during exercise is through perspiration, but as long as your fluid intake is roughly equivalent to your rate of perspiration, hydration levels will be maintained.[14]
Creatine ingested through supplementation is transported into the cells exclusively by CreaT1. However, there is another creatine transporter Crea T2, which is primarily active and present in the testes [12]. Creatine uptake is regulated by various mechanisms, namely phosphorylation and glycosylation as well as extracellular and intracellular levels of creatine. Crea T1 has shown to be highly sensitive to the extracellular and intracellular levels being specifically activated when total creatine content inside the cell decreases [12]. It has also been observed that in addition to cytosolic creatine, the existence of a mitochondrial isoform of Crea T1 allows creatine to be transported into the mitochondria. Indicating another intra-mitochondrial pool of creatine, which seems to play an essential role in the phosphate-transport system from the mitochondria to the cytosol [13]. Myopathy patients have demonstrated reduced levels of total creatine and phosphocreatine as well as lower levels of CreaT1 protein, which is thought to be a major contributor to these decreased levels [14].
Bodybuilders do cardio training such as running and using a StairMaster StepMill to burn fat and make their muscles more visible. “Do cardio throughout the year at least three days a week for at least 30-40 minutes, whether it be first thing in the morning on an empty stomach or after a post-workout protein shake,” says Heath. “Cardio won’t kill your gains as much as you think, you’ll see how much muscle you really have.” Break a sweat to stay lean ’round the clock.
Creatine levels in the blood tend to return to baseline (after a loading with or without the maintenance phase) after 28 days without creatine supplementation.[152][200][201] This number may vary slightly from one individual to another, and for some may exceed 30 days.[202] Assuming an elimination rate of creatinine (creatine’s metabolite) at 14.6mmol per day,[35][201] six weeks of cessation is approaching the upper limit for serum creatine to completely return to baseline.

It is suggested [16,37] that another mechanism for the effect of creatine could be enhanced muscle glycogen accumulation and GLUT4 expression, when creatine supplementation is combined with a glycogen depleting exercise. Whereas it has been observed [38] that creatine supplementation alone does not enhance muscle glycogen storage. Hickner et al [15] observed positive effects of creatine supplementation for enhancing initial and maintaining a higher level of muscle glycogen during 2 hours of cycling. In general, it is accepted that glycogen depleting exercises, such as high intensity or long duration exercise should combine high carbohydrate diets with creatine supplementation to achieve heightened muscle glycogen stores [39].

Minor liver lesions (grade I, no grade II or III, pathology not indicative of toxicity) have been studied in SOD1 G93A transgenic mice (a research model for amyotrophic lateral sclerosis or ALS, but used in this study to assess a state of chronic pro-oxidative stress) for 159 days with 2% of feed intake and in CD-1 rats (seen as normal) over 56 days with 0.025-0.5mg/kg in CD-1 mice, although in Sprague-Dawley rats (normal controls) there were no significant differences noted even after 2% of feed intake for 365 days.[503] These observations appear to be due to the strain of the rodents used,[504][503] and human studies on amyotrophic lateral sclerosis (ALS; what the SOD1 G93A transgenic mice are thought to represent) lasting from nine to sixteen months with subjects supplementing with up to 10g of creatine daily have failed to find any abnormalities in serum biomarkers of liver or kidney health.[505][506][507]
In fact, in one new study comparing the effects of aerobic exercise versus resistance training on the psychological health of obese adolescents, researchers found that people in the resistance group experienced significantly greater self-esteem and perceived strength over four weeks. But what’s most interesting is that the feeling of getting stronger — rather than any measurable gains — was all it took to give them a boost.
Whether you’re taking a supplement or not, creatine is already functioning inside you, doing its very important job. It’s an amino acid found naturally in the meat and fish you consume and, according to the Mayo Clinic, your liver and kidneys crank it out as well. The creatine is mainly stored as creatine phosphate in your muscles, ready for use in energy production.
Studies measuring extracellular water versus intracellular water note similar increases in both, associated with creatine. Creatine does not tend to disturb the ratios of water to dry mass in various tissues measured.[609] At least one study in older men (48-72 years) has failed to find a significant difference in both intracellular and extracellular water concentration after 14 weeks of 5g creatine daily (with gatorade) relative to gatorade in isolation, with the ratio being maintained.[615]

Weight training also provides functional benefits. Stronger muscles improve posture, provide better support for joints, and reduce the risk of injury from everyday activities. Older people who take up weight training can prevent some of the loss of muscle tissue that normally accompanies aging—and even regain some functional strength—and by doing so, become less frail.[33] They may be able to avoid some types of physical disability. Weight-bearing exercise also helps to prevent osteoporosis.[34] The benefits of weight training for older people have been confirmed by studies of people who began engaging in it even in their eighties and nineties.


Synthesis primarily takes place in the kidney and liver, with creatine then being transported to the muscles via the blood. The majority of the human body's total creatine and phosphocreatine stores is located in skeletal muscle, while the remainder is distributed in the blood, brain, and other tissues.[17][18][20] Typically, creatine is produced endogenously at an estimated rate of about 8.3 mmol or 1 gram per day in young adults.[16][17] Creatine is also obtained through the diet at a rate of about 1 gram per day from an omnivorous diet.[17][18] Some small studies suggest that total muscle creatine is significantly lower in vegetarians than non-vegetarians, as expected since foods of animal origin are the primary source of creatine. However, subjects happened to show the same levels after using supplements.[21]
×