Creatine supplementation often causes weight gain that can be mistaken for increase in muscle mass. Increasing intracellular creatine may cause an osmotic influx of water into the cell because creatine is an osmotically active substance [10]. It is possible that the weight gained is water retention and not increased muscle. The retention of water may be connected to reports of muscle cramps, dehydration, and heat intolerance when taking creatine supplements. It would be prudent to encourage proper hydration for creatine users. Further research is needed to investigate these and other possible side effects.
Deldicque et al [32] found a 250%, 45% and 70% increase for collagen mRNA, glucose transporter 4 (GLUT4) and Myosin heavy chain IIA, respectively after 5 days creatine loading protocol (21 g/d). The authors speculated that creatine in addition to a single bout of resistance training can favor an anabolic environment by inducing changes in gene expression after only 5 days of supplementation.
Due to the growing concerns of the high cost, health consequences, and illegal nature of some steroids, many organizations have formed in response and have deemed themselves "natural" bodybuilding competitions. In addition to the concerns noted, many promoters of bodybuilding have sought to shed the "freakish" perception that the general public has of bodybuilding and have successfully introduced a more mainstream audience to the sport of bodybuilding by including competitors whose physiques appear much more attainable and realistic.
A great analogy that I like is that the balance between training and recovery is like digging a hole. Each time you lift, you dig yourself deeper and make it harder to climb out of the hole. To get back out again, you have to fill in the hole to return to ground level, and the only way to fill it is with food and rest. If you overdo it in the gym by pushing too hard, you won’t be able to train as often or at a high capacity. Eventually, you’ll get injured.
For the bench press, start with a weight that you can lift comfortably. If you are a beginner, try lifting the bar along with 5lbs or 10lbs on each side. With arms at shoulder-width apart, grab onto the bar and slowly lower the bar until it's at nipple level; push up until your arms are fully extended upwards. Do 8–10 repetitions (reps) like this for three sets (3 x 8), adding additional weight each set. Once you have a few months of practice, slowly increase weight and go down to 6–8 reps per set, aiming to reach muscle failure at the end of the third set.
Creatine is classified as a "dietary supplement" under the 1994 Dietary Supplement Health and Education Act and is available without a prescription. Creatine is not subjected to FDA testing, and the purity and hygienic condition of commercial creatine products may be questionable [21]. A 1998 FDA report lists 32 adverse creatine-associated events that had been reported to FDA. These include seizure, vomiting, diarrhea, anxiety, myopathy, cardiac arrhythmia, deep vein thromboses and death. However, there is no certainty that a reported adverse event can be attributed to a particular product [22]. A recent survey of 28 male baseball players and 24 male football players, ages 18 to 23, found that 16 (31%) experienced diarrhea, 13 (25%) experienced muscle cramps, 7 (13%) reported unwanted weight gain, 7 (13%) reported dehydration, and 12 reported various other adverse effects [23].
Syndromes caused by problems metabolizing creatine. Some people have a disorder that prevents their body from making creatine. This can lead to low levels of creatine in the brain. Low levels of creatine in the brain can lead to decreased mental function, seizures, autism, and movement problems. Taking creating by mouth daily for up to 3 years can increase creatine levels in the brain in children and young adults with a disorder of creatine production called guanidinoacetate methyltransferase (GAMT) deficiency. This can help improve movement and reduce seizures. But it doesn't improve mental ability. Arginine-glycine amidinotransferase (AGAT) deficiency is another disorder that prevents the body from making creatine. In children with this condition, taking creatine for up to 8 years seems to improve attention, language, and mental performance. But taking creatine does not seem to improve brain creatine levels, movement, or mental function in children who have a disorder in which creatine isn't transported properly.
Negative regulators of the creatine transporter (CrT) are those that, when activated, reduce the activity of the CrT and overall creatine uptake into cells. As noted above, CrT activity is positively regulated by mTOR.[158] Consistent with the well-known role of AMPK as a suppressor mTOR signaling,[177] CrT activity has also been shown to be inhibited in response to AMPK activation in kidney epithelial cells.[178] Since AMPK suppresses mTOR via upstream TSC2 activation,[179] the negative regulation of AMPK on CrT activity in these cells appears to occur through an indirect mechanism. Although indirect, activation of AMPK has been noted to reduce the Vmax of the CrT without altering creatine binding, and is involved in internalizing the receptors.[178] This pathway seems to max out at around 30% suppression, with no combination of mTOR antagonists and AMPK inducers further suppressing creatine uptake.[178]
Eat healthy fats. That's right—not only does it make food taste good, fat is good for you, as long as you are eating the right kinds and amounts of fat! Saturated fats—the fat you'll find in a stick of butter, a bag of chips, or bacon—should be limited to about 20g or less. That's the bad news. The good news is that unsaturated fats are actually beneficial, even necessary. Fat is necessary for the proper distribution of vitamins A, D, E, and K, helps promote better eyesight, and healthy skin. Fats are also important for the synthesis of hormones, so maintaining an adequate intake of them will speed up muscle-building and recovery.
Carbohydrates provide quick energy in an anaerobic environment (high-intensity exercise), while fats provide sustained energy during periods of high oxygen availability (low-intensity exercise or rest). The breakdown of carbohydrates, fats, and ketones produces ATP (adenosine triphosphate). When cells use ATP for energy, this molecule is converted into adenosine diphosphate (ADP) and adenosine monophosphate (AMP). Creatine exists in cells to donate a phosphate group (energy) to ADP, turning this molecule back into ATP.[20][21][22][23]

McArdle’s disease is a myopathic disorder associated with fatigue and contractile dysfunction as a result of alterations in the release of glucose from glycogen (via defects in myophosphorylase enzyme function) resulting in an inability to conduct high intensity work as easily.[548] Creatine is thought to be therapeutic because beyond the general strength enhancing properties of creatine, people with McArdle’s disease have an upregulation of phosphofructokinase (PFK) enzyme activity [570] and increasing phosphocreatine storages suppresses the activity of this enzyme.[571]
Contrast loading is the alternation of heavy and light loads. Considered as sets, the heavy load is performed at about 85-95% 1 repetition max; the light load should be considerably lighter at about 30-60% 1RM. Both sets should be performed fast with the lighter set being performed as fast as possible. The joints should not be locked as this inhibits muscle fibre recruitment and reduces the speed at which the exercise can be performed. The lighter set may be a loaded plyometric exercise such as loaded squat jumps or jumps with a trap bar.

There is some research that suggests that creatine can help people with type 2 diabetes by improving insulin sensitivity, glucose uptake into the cells, and glycemic control. This has led many people with T2 to start supplementing their diets with pure creatine to try and reap the benefits. At this time there has been no conclusive research done into the effectiveness of creatine for type 1 diabetics.
Magnesium-chelated creatine typically exerts the same ergogenic effects as creatine monohydrate at low doses.[78] It was created because carbohydrates tend to beneficially influence creatine metabolism and magnesium is also implicated in carbohydrate metabolism and creatine metabolism.[79][80] Magnesium chelated creatine may be useful for increasing muscle strength output with a similar potency to creatine monohydrate, but without the water weight gain, as there are noted differences, but they are statistically insignificant.[80][81]
It’s perhaps best known for the aesthetic benefits. Creatine increases muscle size relatively quickly and while that’s in part due to an increase in muscle water content — a good thing, since it means we’re better hydrated — it does indeed appear to lead to actual hypertrophy over time. And bigger muscles aren’t just aesthetic: larger muscles can improve work capacity, explosiveness, fat oxidation, injury resilience, and recovery.
Research shows that strength training is especially effective at raising EPOC. That’s because, generally speaking, strength-training sessions cause more physiological stress to the body compared to cardiovascular exercise, even higher-intensity cardio intervals. However, it’s worth noting that overall exercise intensity is what makes the biggest impact on EPOC. So squats, deadlifts, and bench presses with heavy weights are going to be much more effective at raising EPOC compared to bicep curls and triceps extensions with light weights.
×