As a ingredient that has been tested time and time again and shown to positively affect the building of muscle, GAT has taken the highest-quality compound to create Essentials Creatine. Using HPLC-tested pharmaceutical grade creatine that's tested to be 99.9% pure, Essentials Creatine provides 5 grams in every serving which can increase muscle size, boost strength, and enhance muscle recovery. Keep Reading »
Athletic performance. Creatine seems to help improve rowing performance, jumping height, and soccer performance in athletes. But the effect of creatine on sprinting, cycling, or swimming performance varies. The mixed results may relate to the small sizes of the studies, the differences in creatine doses, and differences in test used to measure performance. Creatine does not seem to improve serving ability in tennis players.
A: Start with the calculations above but don’t be afraid to adjust up or down. Your metabolism and physiology will adapt to more food by trying to maintain homeostasis and regulate your bodyweight. Some may have to increase more than others but the number on the scale doesn’t lie. If it’s not going up, then you probably need to increase your calories.

While the number of reps you do per set is important, of equal importance is the total number of reps you do per muscle group. The National Strength and Conditioning Association has determined that, to maximize growth, you need approximately 20–70 total reps per muscle group. Depending on which end of a rep range you’re working, this can be done in one session or over a few days (a training week, for instance), but that’s the spread you need to cover to see gains.
"Start with two days for two to three weeks, then add a third day," says Davis*.*"Ideally, you should strength train three to five days per week, but work your way up—starting off at five days a week might shock your body." Here's a comprehensive three-day-per-week plan to get you started. Aim to complete 20-minute sessions, then gradually add on time in ten-minute increments until you're working for 45 to 60 minutes, suggests Davis.
“Compared to training for strength, intensity is going to drop during the hypertrophy phase of a program, with intensity sitting between 50 and 75 percent of the person’s 1RM, the maximum weight he or she can lift for one rep,” says Ava Fitzgerald, C.S.C.S., C.P.T., a sports performance coach with the Professional Athletic Performance Center in New York.
If you're a serious strength or physique athlete, you've surely heard that supplements can help you get the most from your intense training sessions and on-point diet. But which supplements? The market is overstuffed like a bodybuilder in a child's blazer! You might be tempted to wander through a digital forest of get-big blogs and personal guru websites, but unfortunately those places can often be rife with misinformation.
More recent studies on the regulation of CrT creatine transport activity have identified the protein kinase (Janus-Activating Kinase 2) JAK2, which suppresses the rate of creatine uptake via CrT without affecting creatine binding.[181] JAK2 is a regulatory protein involved in stabilizing the cellular membrane and controlling water concentrations in response to osmotic stress.[182][183] Similar to c-Src (a positive creatine transport regulator), Jak2 can also be activated by growth hormone signaling.[169][184] The growth hormone receptor seems to activate these two factors independently, as gh-mediated activation of c-Src does not require JAK2.[168] Given that c-Src is a positive regulator of CrT, JAK2 is a negative regulator, and the fact that downstream signals from both are induced by growth hormone, it is tempting to speculate that JAK2 activation downstream of the gh receptor may function as a homeostatic response to limit c-src induced creatine uptake. This has not been studied, however, and the effects of gh-induced JAK2 signaling on CrT activity have not been examined.

In regard to the blood brain barrier (BBB), which is a tightly woven mesh of non-fenestrated microcapillary endothelial cells (MCECs) that prevents passive diffusion of many water-soluble or large compounds into the brain, creatine can be taken into the brain via the SLC6A8 transporter.[192] In contrast, the creatine precursor (guanidinoacetate, or GAA) only appears to enter this transporter during creatine deficiency.[192] More creatine is taken up than effluxed, and more GAA is effluxed rather than taken up, suggesting that creatine utilization in the brain from blood-borne sources[192] is the major source of neural creatine.[193][192] However, “capable of passage” differs from “unregulated passage” and creatine appears to have tightly regulated entry into the brain in vivo[193]. After injecting rats with a large dose of creatine, creatine levels increased and plateaued at 70uM above baseline levels. These baseline levels are about 10mM, so this equates to an 0.7% increase when superloaded.[193] These kinetics may be a reason for the relative lack of neural effects of creatine supplementation in creatine sufficient populations.
×