When combined with an appropriate exercise program, dietary supplementation with β-hydroxy β-methylbutyrate (HMB) has been shown to dose-dependently augment gains in muscle hypertrophy (i.e., the size of a muscle),[38][39] muscle strength,[38][40][41] and lean body mass,[38][40][41] reduce exercise-induced skeletal muscle damage,[note 1][38][39][41] and expedite recovery from high-intensity exercise.[38][42] HMB is believed to produce these effects by increasing muscle protein synthesis and decreasing muscle protein breakdown by various mechanisms, including activation of the mechanistic target of rapamycin (mTOR) and inhibition of the proteasome in skeletal muscles.[40][43]
In otherwise healthy adults subject to leg immobilization for two weeks while taking 20g creatine daily during immobilization and then 5g daily during eight weeks of rehabilitation, it was noted that the creatine group failed to reduce atrophy during the immobilization (10% reduction in cross sectional area and 22-25% reduction in force output) despite preventing a decrease in phosphocreatine, yet experienced a significantly enhanced rate of regrowth and power recovery.[358] A similarly structured and dosed study has also noted greater expression of skeletal muscle, GLUT4 expression, and a 12% increase in muscle phosphocreatine content.[330] 

It can be hard to know where to start when beginning strength training. There are countless exercises you can do, some of which work some muscles, but not others. There are safety concerns to beware of, a wide variety of sometimes confusing equipment to help you in your efforts, and so on. With some familiarity of the basics of getting started with strength training, actually doing so can become far less daunting, and you can begin to craft a routine that is targeted toward helping you achieve your personal goals.
When looking specifically at human studies, there has been a failure of creatine supplementation to induce or exacerbate kidney damage in people with amyotrophic lateral sclerosis (ALS). Subjects do not experience kidney damage for up to or over a year’s worth of supplementation in the 5-10g range.[505][506][507] Postmenopausal women,[517] people with type II diabetes,[518] people on hemodialysis,[313] otherwise healthy elderly,[519] young people,[454][520][521] and athletes do not experience kidney damage either.[324] Moreover, numerous scientific reviews on both the long- and short-term safety of supplemental creatine have consistently found no adverse effects on kidney function in a wide range of doses.[522][523][524][452][525][451][526][527] However, while doses >10 g/day have been found not to impair kidney function, there are fewer long-term trials using such high chronic daily intakes.[527]
A: Start with the calculations above but don’t be afraid to adjust up or down. Your metabolism and physiology will adapt to more food by trying to maintain homeostasis and regulate your bodyweight. Some may have to increase more than others but the number on the scale doesn’t lie. If it’s not going up, then you probably need to increase your calories.

Kerksick, C. M., Wilborn, C. D., Campbell, W. I., Harvey, T. M., Marcello, B. M., Roberts, M. D., Parker, A. G., Byars, A. G., Greenwood, L. D., Almada, A. L., Kreider, R. B., and Greenwood, M. The effects of creatine monohydrate supplementation with and without D-pinitol on resistance training adaptations. J.Strength.Cond.Res. 2009;23:2673-2682. View abstract.

I get lost every time I walk into my neighborhood GNC… the people who work there know their stuff, but nobody knows my body better than me and that’s where it all falls apart, but I’m working on that. I agree, I rather have grass-fed and more natural options as opposed to anything containing GMO in the products… The point is to become healthier, not go the other way…. But I also don’t want to get too much soy in my diet either… My wife is doesn’t want it for me and it’s given me headaches too, so I’m not really one for those. I guess small amounts of soy should be okay, right? Could someone be allergic to soy? There’s tons of other options though and I’m going to have to really look more into these here coz it has everything I’ve been looking for! Thanks for putting this together!
^ Kreider RB, Kalman DS, Antonio J, Ziegenfuss TN, Wildman R, Collins R, Candow DG, Kleiner SM, Almada AL, Lopez HL (2017-06-13). "International Society of Sports Nutrition position stand: safety and efficacy of creatine supplementation in exercise, sport, and medicine". Journal of the International Society of Sports Nutrition. 14: 18. doi:10.1186/s12970-017-0173-z. PMC 5469049. PMID 28615996.
The body's pool of creatine can be replenished either from food (or supplements) or through synthesis from precursor amino acids. Dietary sources include beef, tuna, cod, salmon, herring, and pork [2]. The normal dietary intake of creatine is 1-2 g/day, although vegetarians may consume less [3,4]. Dietary creatine is absorbed from the intestines into the bloodstream. If the dietary supply is limited, creatine can be synthesized from the body stores of the amino acids glycine, arginine, and methionine. The kidneys use glycine and arginine to make guanidinoacetate, which the liver methylates to form creatine [1], which is transported to the muscle cells for storage. It is also stored in the kidneys, sperm cells, and brain tissue [5].
Listen, I know in the beginning of this post I was sympathetic to your problem, but I am also here to say, Suck It Up. I can tell you that to gain weight, you need to focus on making your meals a habit rather than an afterthought. Your body is pre-programmed with your genetic disposition. And in your case, you have a very fast metabolism that digests and burns calories quickly. Focus on having 5-6 calorie-dense meals a day spaced 2-3 hours apart so that your body is constantly being provided with something to metabolize and build muscle. 

1. Are you tracking calories? Doesn't have to be religiously but one should have a general idea of where they're at if the goal is mass gain and things have stalled. I'm not talking about weighing every gram of food you put in your mouth and meticulously logging your life on MyFitnessPal. As long as you're aware (within 100-200 calories) of what's going in, you should have an idea of what to adjust.
In addition to being potentially harmful, some have argued that there is little evidence to indicate any benefit to using bodybuilding protein or amino acid supplements. "In view of the lack of compelling evidence to the contrary, no additional dietary protein is suggested for healthy adults undertaking resistance or endurance exercise".[18] In dispute of this, one more recent meta-analysis concluded that for athletes participating in resistance exercise training and consuming protein supplements for an average of 13 weeks, total protein intake up to 1.6 g per kg body weight per day would result in an increase in strength and fat-free mass, i.e. muscle, but that higher intakes would not further contribute. The muscle mass increase was statistically significant but modest - averaging 0.3 for all trials and 1.0 to 2.0 kg, for protein intake ≥ 1.6 g/kg/day.[3]
In regard to practical interventions, concurrent glycogen loading has been noted to increase creatine stores by 37-46% regardless of whether the tissue was exercised prior to loading phase.[176] It is important to note, however, that creatine levels in response to the creatine loading protocol were compared in one glycogen-depleted leg to the contralateral control leg, which was not exercised.[176] This does not rule out a possible systemic exercise-driven increase in creatine uptake, and the increase in creatine noted above[176] was larger than typically seen with a loading protocol (usually in the 20-25% range). Consistent with an exercise-effect, others have reported that exercise itself increases creatine uptake into muscle, reporting 68% greater creatine uptake in an exercised limb, relative to 14% without exercise.[153]

^ Haykowsky MJ, Liang Y, Pechter D, Jones LW, McAlister FA, Clark AM (June 2007). "A meta-analysis of the effect of exercise training on left ventricular remodeling in heart failure patients: the benefit depends on the type of training performed". Journal of the American College of Cardiology. 49 (24): 2329–36. doi:10.1016/j.jacc.2007.02.055. PMID 17572248.
In muscle cells, the creatine transporter is predominantly localized to the sarcolemmal membrane. Western blot analysis of creatine transporter expression revealed the presence of two distinc protein bands, migrating at 55kDa and 70kDa on reducing SDS-PAGE gels.[147][148] The 73kDa band has been reported to be the predominant band in humans, with no differences based on gender.[148] A more recent report demonstrated that the 55kDa creatine transporter variant is glycosylated, forming the 73 kDa protein. Therefore, the 55 and 75kDa protein bands are actually immature and mature/processed forms of the creatine transporter protein, respectively.[149]

When creatine supplementation is combined with heavy resistance training, muscle insulin like growth factor (IGF-1) concentration has been shown to increase. Burke et al [2] examined the effects of an 8 week heavy resistance training protocol combined with a 7 day creatine loading protocol (0.25 g/d/kg lean body mass) followed by a 49 day maintenance phase (0.06 g/kg lean mass) in a group of vegetarian and non-vegetarian, novice, resistance trained men and women. Compared to placebo, creatine groups produced greater increments in IGF-1 (78% Vs 55%) and body mass (2.2 Vs 0.6 kg). Additionally, vegetarians within the supplemented group had the largest increase of lean mass compared to non vegetarian (2.4 and 1.9 kg respectively). Changes in lean mass were positively correlated to the modifications in intramuscular total creatine stores which were also correlated with the modified levels of intramuscular IGF-1. The authors suggested that the rise in muscle IGF-1 content in the creatine group could be due to the higher metabolic demand created by a more intensely performed training session. These amplifying effects could be caused by the increased total creatine store in working muscles. Even though vegetarians had a greater increase in high energy phosphate content, the IGF-1 levels were similar to the amount observed in the non vegetarian groups. These findings do not support the observed correlation pattern by which a low essential amino acid content of a typical vegetarian diet should reduce IGF-1 production [33]. According to authors opinions it is possible that the addition of creatine and subsequent increase in total creatine and phosphocreatine storage might have directly or indirectly stimulated production of muscle IGF-I and muscle protein synthesis, leading to an increased muscle hypertrophy [2].

There are countless reasons to lift weights and build strong muscles, including injury prevention, improved bone density, and a lower risk for type 2 diabetes and other diseases—not to forget that bad-ass feeling you get when you can haul a giant piece of furniture up the stairs all by yourself. Another often-cited benefit to strength training is that it will increase your metabolism. But how much does your metabolism increase with strength training? The answer depends on many different factors.
^ Jump up to: a b Barcelos RP, Stefanello ST, Mauriz JL, Gonzalez-Gallego J, Soares FA (2016). "Creatine and the Liver: Metabolism and Possible Interactions". Mini Reviews in Medicinal Chemistry. 16 (1): 12–8. doi:10.2174/1389557515666150722102613. PMID 26202197. The process of creatine synthesis occurs in two steps, catalyzed by L-arginine:glycine amidinotransferase (AGAT) and guanidinoacetate N-methyltransferase (GAMT), which take place mainly in kidney and liver, respectively. This molecule plays an important energy/pH buffer function in tissues, and to guarantee the maintenance of its total body pool, the lost creatine must be replaced from diet or de novo synthesis.

In vitro, creatine (0.125mM or higher) can reduce excitotoxicity from glutamate, which is thought to be secondary to preserving intracellular creatine phosphate levels.[209] Glutamate-induced excitotoxicity is caused by excessive intracellular calcium levels resulting from ATP depletion. Since high levels of calcium inside the cell are toxic, ATP preserves membrane integrity,[210] in part by promoting calcium homeostasis. When ATP is depleted, the sodium-potassium ATPase pump (Na+,K+-ATPase) stops working, leading to sodium accumulation in the cell. This reduces the activity of the sodium-calcium exchange pump, which, alongside a lack of ATP, reduces calcium efflux through the Na+,K+-ATPase. Thus, ATP depletion leads to intracellular calcium overload, loss of membrane potential, and excitotoxic cell death. Therefore, by helping preserve ATP levels, creatine is protective against excitotoxicity. This protective effect was noted after either creatine preloading or addition up to 2 hours after excitotoxicity.[209] Protection from glutamate-induced toxicity also extends to glial cells[211] and is additive with COX2 inhibition.[212]
According to the two meta-analyses on the topic, creatine significantly increases power when supplemented in both sexes over a period of time up to 8 weeks, during which improvement over placebo is maintained, rather than being enhanced further. The rate at which power is derived from a resistance training regimen appears to be up to 78.5% greater with creatine relative to placebo, and in active trained men who are naive to creatine, this can be quantified at about 7kg for the bench press and 10kg for the squat over 8 weeks.

Creatine is a naturally occurring compound found in muscle in large amounts. Creatine monohydrate is the supplement form and combines is a combination of the amino acids arginine, glycine, and methionine. Creatine drives the important creatine phosphate energy pathway, which is important in high-intensity activity such as weightlifting. Creatine can improve body bulk and training performance in high-intensity activities. Be aware that not everyone responds to creatine supplementation and 30 percent of users may not see any improvement. Women may not benefit as much as men. In weight training, increased strength, bulk, and fat loss are reasonably consistent results.
Creatine kinase is expressed in eyes. The eyes can take creatine up from the blood via two different transporters, the classic SCL6A8 (creatine transporter) and MCT12. It seems that expression of the receptors and accumulation of creatine occur in a relatively higher level in photoreceptors, which perceive color. Similarly to many other tissues, they appear to protect the cells during periods of low oxygen availability.

Overtraining occurs when a bodybuilder has trained to the point where his workload exceeds his recovery capacity. There are many reasons why overtraining occurs, including lack of adequate nutrition, lack of recovery time between workouts, insufficient sleep, and training at a high intensity for too long (a lack of splitting apart workouts). Training at a high intensity too frequently also stimulates the central nervous system (CNS) and can result in a hyperadrenergic state that interferes with sleep patterns.[51] To avoid overtraining, intense frequent training must be met with at least an equal amount of purposeful recovery. Timely provision of carbohydrates, proteins, and various micronutrients such as vitamins, minerals, phytochemicals, even nutritional supplements are acutely critical. A mental disorder informally called “bigorexia” (by analogy with anorexia) may be held accountable of some people overtraining. Sufferers feel as if they are never big enough or muscular enough, which forces them to overtrain in order to try and reach their goal physique.[52]
Creatine may preserve dopamine synthesis in the striatum of mice (while protecting against dopaminergic depletion) when fed to mice at 2% of the diet for one week prior to MPTP toxicity[230]. This is possibly secondary to increasing tyrosine hydroxylase activity, the rate-limiting step of dopamine biosynthesis.[210][235] Two percent creatine was as protective as 0.005% rofecoxib (a COX2 inhibitor), but the two were additive in their protective effects (highly synergistic in regard to DOPAC by normalizing it, but not synergistic in preserving HVA).[230]
Taking creatine supplements may increase the amount of creatine in the muscles. Muscles may be able to generate more energy or generate energy at a faster rate. Some people think that taking creatine supplements along with training will improve performance by providing quick bursts of intense energy for activities such as sprinting and weightlifting.
Even if you have a schedule that allows for a 5-day workout split, many people (I’d even call it the majority) simply don’t have the recovery capacity needed to make that work. This could be due to genetics, age, injury history, various lifestyle factors (sleep, stress, etc.) and more. In these cases, better results would be seen with 3-4 workouts per week instead.

de Salles Painelli V, Alves VT, Ugrinowitsch C, et al. Creatine supplementation prevents acute strength loss induced by concurrent exercise. Eur J Appl Physiol 2014;114(8):1749-55.del Favero S, Roschel H, Artioli G, et al. Creatine but not betaine supplementation increases muscle phosphorylcreatine content and strength performance. Amino Acids 2012;42(6):2299-305. View abstract.

This basic form of creatine comes in two forms, one of which involves the removal of the monohydrate (which results in creatine anhydrous) that converts to creatine monohydrate in an aqueous environment,[66][67] but due to the exclusion of the monohydrate it is 100% creatine by weight despite creatine monohydrate being 88% creatine by weight, as the monohydrate is 12%. This allows more creatine to be present in a concentrated formula, like capsules.[68]
If you are somebody that is tired of not getting results, wants to avoid trial-and-error, or you just want to be told exactly what to do to reach your goals, check out our popular 1-on-1 coaching program. You’ll work with our certified NF instructors who will get to know you better than you know yourself and program your workouts and nutrition strategy for you.
It can be hard to know where to start when beginning strength training. There are countless exercises you can do, some of which work some muscles, but not others. There are safety concerns to beware of, a wide variety of sometimes confusing equipment to help you in your efforts, and so on. With some familiarity of the basics of getting started with strength training, actually doing so can become far less daunting, and you can begin to craft a routine that is targeted toward helping you achieve your personal goals.
It raised the question about performance-enhancing drugs. Their murky role in bodybuilding has long shrouded the sport. A 2013 documentary on Heath and Mr. Olympia called “Generation Iron” (a sort of bookend piece to 1977’s “Pumping Iron,” which launched Schwarzenegger and others to fame) called the topic “taboo.” It then insinuated that, of course, bodybuilders competing in top-level contests like Mr. Olympia use steroids.
There are several ways to enhance the quality of a workout, and some changes can even be made during each rep. “Constant tension should be applied to the last five reps of every working set, meaning, do the first 5-6 reps normal tempo, and the last few reps should be held for at least two seconds at the peak of the contraction,” says Heath. “This allows your muscles to have more time under tension and you work different muscle fibers.” Hold the weight at the top for a maximum pump.
Carducci, C., Birarelli, M., Leuzzi, V., Carducci, C., Battini, R., Cioni, G., and Antonozzi, I. Guanidinoacetate and creatine plus creatinine assessment in physiologic fluids: an effective diagnostic tool for the biochemical diagnosis of arginine:glycine amidinotransferase and guanidinoacetate methyltransferase deficiencies. Clin Chem 2002;48(10):1772-1778. View abstract.
However, the basis of “take creatine after your workout” comes from a 2013 study published in the JISSN, which can be found here (open access too!). In this study, recreational male bodybuilders (19 men overall) were given five grams of creatine either before or after their workouts. They trained five days per week but were also directed to consume 5g on their rest days at any time they wanted. The workouts were fairly similar to most gym workouts, and the methodology (what they did and how they did it) suggests that the findings would apply to most weightlifters.
Branched-chain amino acids (leucine, isoleucine, valine) play important roles in muscle building. Some researchers have found that following exercise, the branched-chain amino acids, especially leucine, increase the rate of protein synthesis and decrease the rate of protein catabolism (Blomstrand, 2006). The billion dollar supplement industry has been quick to respond; leucine supplements are widely available in health food stores, with a cost upwards of $50 per container. However, because the research findings are inconsistent and little is known about the safety of these products, the American Dietetic Association (soon to be renamed the Academy of Nutrition and Dietetics) advises against individual amino acid supplementation and protein supplementation overall (Rodriquez, 2009). It may be that food sources of these proteins and amino acids provide the same effect for a small fraction of the cost.
In fact, in one new study comparing the effects of aerobic exercise versus resistance training on the psychological health of obese adolescents, researchers found that people in the resistance group experienced significantly greater self-esteem and perceived strength over four weeks. But what’s most interesting is that the feeling of getting stronger — rather than any measurable gains — was all it took to give them a boost.

Now, while all three are definitely beneficial to the process, I’d consider metabolic stress and muscular damage to be of secondary and tertiary importance, respectively. In addition, they are also things that will pretty much take care of themselves when implementing the workout guidelines and recommendations we’ve already covered (namely for volume, rep ranges, rest periods and exercise selection).
I bought this for my husband since he recently started lifting again. I knew that he wanted to gain as much muscle mass as possible and this looked like a pretty good product. It comes in a nice black bottle with good labeling. The bottle contains 90 capsules, which is about a month and a half worth of supplements. He has been taking 2 capsules before bed each night and for the past few weeks and has had no negative side effects. It's also really easy to remember since you take the both at the same time instead of spread throughout the day. He says that he has noticed a difference most of all in his muscle tone and just an overall feeling of being refreshed.
While training intensity can be accomplished trough a targeted training program and an ability to adequately stimulate our muscles is something the motivated and determined bodybuilder often has no problem doing, muscle recovery is another issue. It is especially important at a time of the year when social demands and incorrect eating combine to stifle our progress.

The concentration in healthy controls (57+/-8 years) without supplementation of creatine appears to be around 1.24+/-0.26µM per gram of hemoglobin[292] and appears to decrease in concentration during the aging process of the erythrocyte.[294][295][296] Otherwise healthy subjects who take a loading phase of creatine (5g four times daily for five days) can experience a 129.6% increase in erythrocytic creatine concentrations from an average value of 418µM (per liter) up to 961µM with a large range (increases in the range of 144.4-1004.8µM),[297] and this effect appears to correlate somewhat with muscular creatine stores.[297]
There you have it — our five favorite creatine products on the market. But when you’ve tried as many creatines as we have, there were a lot of others that we loved but didn’t make the very top of our list for the previous categories. That’s why we’ve also come up with a list of the best creatines for men, best creatines for women, best creatines for muscle growth, for bulking, for the brain, and the best micronized creatine. Keep reading for our favorite picks!
The creatine kinase (CK) enzyme in rat heart tissue appears to have a KM around 6mM of creatine as substrate.[280] and is known to positively influence mitochondrial function as higher cytoplasmic phosphocreatine concentrations (not so much creatine per se) increase the oxidative efficiency of mitochondria[280] This is thought to be due to the transfer of high energy phosphate groups.[280]
There are countless reasons to lift weights and build strong muscles, including injury prevention, improved bone density, and a lower risk for type 2 diabetes and other diseases—not to forget that bad-ass feeling you get when you can haul a giant piece of furniture up the stairs all by yourself. Another often-cited benefit to strength training is that it will increase your metabolism. But how much does your metabolism increase with strength training? The answer depends on many different factors.