The first thing you need is a weight training program that signals the muscle building process to begin. Research has shown that a well designed program will generate this “signal” via a combination of progressive tension overload (as in, getting stronger over time), metabolic stress (as in, fatiguing the muscle and getting “the pump”), and muscular damage (as in, actual damage to the muscle tissue itself).

You don’t have to, but you can. The typical creatine dose is 5 grams once or twice per day, but it’s sometimes suggested that one should “load” creatine by taking 20 to 25 grams per day for the first week of usage. This is then followed with 3 to 4 weeks of 5 grams per day, then a break for a week or two, then repeat. This may bring about more acute increases in strength and muscle size — creatine will “work” more quickly, in other words — but it’s not necessary.
In the last week leading up to a contest, bodybuilders usually decrease their consumption of water, sodium, and carbohydrates, the former two to alter how water is retained by the body and the latter to reduce glycogen in the muscle. The day before the show, water is removed from the diet, and diuretics may be introduced, while carbohydrate loading is undertaken to increase the size of the muscles through replenishment of their glycogen. The goal is to maximize leanness and increase the visibility of veins, or "vascularity". The muscular definition and vascularity are further enhanced immediately before appearing on stage by darkening the skin through tanning products and applying oils to the skin to increase shine. Some competitors will eat sugar-rich foods to increase the visibility of their veins. A final step, called "pumping", consists in performing exercises with light weights or other kinds of low resistance (for instance two athletes can "pump" each other by holding a towel and pulling in turn), just before the contest, to fill the muscles with blood and further increase their size and density.
"Start with two days for two to three weeks, then add a third day," says Davis*.*"Ideally, you should strength train three to five days per week, but work your way up—starting off at five days a week might shock your body." Here's a comprehensive three-day-per-week plan to get you started. Aim to complete 20-minute sessions, then gradually add on time in ten-minute increments until you're working for 45 to 60 minutes, suggests Davis.
The majority of studies focusing on creatine supplementation report an increase in the body’s’ creatine pool [15-17]. There is a positive relationship between muscle creatine uptake and exercise performance [17]. Volek et al [18] observed a significant increase in strength performance after 12 weeks creatine supplementation with a concurrent periodized heavy resistance training protocol. The creatine supplementation protocol consisted of a weeklong loading period of 25 g/d followed by a 5 g maintenance dose for the remainder of the training. These positive effects were attributed to an increased total creatine pool resulting in more rapid adenosine triphosphate (ATP) regeneration between resistance training sets allowing athletes to maintain a higher training intensity and improve the quality of the workouts along the entire training period.
Eating the right carbs is important too. Carbohydrate is stored in your body in the form of glycogen. Glycogen in the muscles is an important fuel reserve during intense physical exercise or in times of energy restriction – protein sparing. It is best to restrict or to keep away from junk carbohydrates such as sweets, cakes, and biscuits, and stick to foods like porridge, pasta (wholemeal), rice (brown), bread (wholegrain), and cereals (try to choose the versions with low or reduced sugar and salt). For more on carbohydrate and the effect of sugar on the body, click here.
However, caffeine does not negate the benefits of creatine loading when not coingested, but just taken before exercise in the same dosage.[593] This result indicates that loading creatine without caffeine on a daily basis, but saving caffeine for select workouts, may be an effective strategy, as creatine does not adversely affect caffeine’s ergogenic effects[593][594] and may enhance creatine’s effectiveness in anaerobic exertion if the two compounds are alternated.[595]
Another part of training isn't just doing the exercises, it's resting between the exercises. This comes with experience, but the general rule is, the higher the reps, the shorter the rest. So, if you're doing 15 reps, you might rest about 30 to 60 seconds between exercises. If you're lifting very heavy, say 4 to 6 reps, you may need up to two or more minutes.

In regard to the blood brain barrier (BBB), which is a tightly woven mesh of non-fenestrated microcapillary endothelial cells (MCECs) that prevents passive diffusion of many water-soluble or large compounds into the brain, creatine can be taken into the brain via the SLC6A8 transporter.[192] In contrast, the creatine precursor (guanidinoacetate, or GAA) only appears to enter this transporter during creatine deficiency.[192] More creatine is taken up than effluxed, and more GAA is effluxed rather than taken up, suggesting that creatine utilization in the brain from blood-borne sources[192] is the major source of neural creatine.[193][192] However, “capable of passage” differs from “unregulated passage” and creatine appears to have tightly regulated entry into the brain in vivo[193]. After injecting rats with a large dose of creatine, creatine levels increased and plateaued at 70uM above baseline levels. These baseline levels are about 10mM, so this equates to an 0.7% increase when superloaded.[193] These kinetics may be a reason for the relative lack of neural effects of creatine supplementation in creatine sufficient populations.