The lower the rep range (and therefore the higher the intensity and the heavier the weight), the more rest there should be between sets. So most of the time, exercises being done in the 5-8 rep range need longer rest periods than exercises being done in the 8-10 rep range, which need longer rest periods than exercises being done in the 10-15 rep range.

Three amino acids (glycine, arginine and methionine) and three enzymes (L-arginine:glycine amidinotransferase, guanidinoacetate methyltransferase and methionine adenosyltransferase) are required for creatine synthesis. The impact creatine synthesis has on glycine metabolism in adults is low, however the demand is more appreciable on the metabolism of arginine and methionine [11].

Spillane M, Schoch R, Cooke M, Harvey T, Greenwood M, Kreider R, Willoughby DS. The effects of creatine ethyl ester supplementation combined with heavy resistance training on body composition, muscle performance, and serum and muscle creatine levels. J Int Soc Sports Nutr. 2009;6:6. doi: 10.1186/1550-2783-6-6. [PMC free article] [PubMed] [CrossRef]

*Always remember: weight loss results & health changes/improvements vary from individual to individual. Just because these studies cite certain data does not mean you will experience these results/outcomes. Always consult with your doctor before making decisions about your health. This is not medical advice – simply well-researched information and tips to sleep better. Thanks for reading!
This increased permeability is noted in glioma cells, where it exerts anti-cancer effects related to cell swelling,[99][100] and in other membranes, such as breast cancer cells[101] and skeletal (contractile) muscle cells.[102] The kinetics of cyclocreatine appear to be first-order,[101] with a relative Vmax of 90, Km of 25mM and a KD of 1.2mM.[103]
According to BodyBuilding.com, adenosine triphosphate (ATP) is made up of a nucleotide bonded to three phosphate groups. When one of those phosphate groups is cleaved from the ATP molecule, a lot of energy is made available. That energy is used to fuel chemical reactions in cells, and ATP becomes adenosine diphosphate (ADP). Creatine enables the release of energy from stored ATP and is converted to creatinine.
Exercise is highly effective in increasing your lean body mass, which is essentially muscle. In a study published in 2012, progressive resistance training helped men ages 50 to 83 gain an average of 2.4 pounds of lean body mass over an average of 20.5 weeks. Progressive resistance training involves performing weight bearing exercises. In addition, you must slowly increase the challenge of the exercise over time by increasing the weight, reps and/or sets. Studies show that either increasing reps or weight amount will work. So, if you don’t want to lift more weight, you can just do more reps and still build muscle.
When looking specifically at human studies, there has been a failure of creatine supplementation to induce or exacerbate kidney damage in people with amyotrophic lateral sclerosis (ALS). Subjects do not experience kidney damage for up to or over a year’s worth of supplementation in the 5-10g range.[505][506][507] Postmenopausal women,[517] people with type II diabetes,[518] people on hemodialysis,[313] otherwise healthy elderly,[519] young people,[454][520][521] and athletes do not experience kidney damage either.[324] Moreover, numerous scientific reviews on both the long- and short-term safety of supplemental creatine have consistently found no adverse effects on kidney function in a wide range of doses.[522][523][524][452][525][451][526][527] However, while doses >10 g/day have been found not to impair kidney function, there are fewer long-term trials using such high chronic daily intakes.[527]
Creatine supplementation in the under 18 population has not received a great deal of attention, especially in regards to sports/exercise performance. Despite this, creatine is being supplemented in young, <18 years old, athletes [52,53]. In a 2001 report [52] conducted on pupils from middle and high school (aged 10 – 18) in Westchester County (USA) 62 of the 1103 pupils surveyed were using creatine. The authors found this concerning for 2 main reasons: firstly, the safety of creatine supplementation is not established for this age group and is therefore not recommended. Secondly, it was speculated that taking creatine would lead on to more dangerous performance enhancing products such as anabolic steroids. It is important to point out that this potential escalation is speculation. Furthermore, a questionnaire was used to determine creatine use amongst this age group and does not necessarily reflect the truth.
It’s true—your genes can play a role when it comes to building muscle. In general, there are two types of muscle fibers: Type I, which are slow twitch, and Type II, which are fast twitch. Depending on which you have more of, you may have an easier or harder time gaining muscle. “Fast twitch muscle fibers are two times as thick as slow twitch muscle fibers, lending to the overall thickness of the muscle without any activity,” explains Lovitt. “Those people with a genetic predisposition of a high percentage of these fibers can increase muscle size very easily while the people with a higher percentage of slow twitch muscle fibers have to work really hard to put on mass.” It’s the reason why a world-class sprinter genetically has more fast twitch muscle fibers than a world-class marathoner—it comes down to what we’re born with.
Using too much weight, too soon; always start lower than your expected ability and work your way up that first workout. If your form suffers, you are swinging the weight, or using momentum, this indicates you may be using too much weight. Greater momentum increases the potential for injury and reduces the effectiveness to the muscle group being targeted.
In October 1994, the Dietary Supplement Health and Education Act (DSHEA) was signed into law in the USA. Under DSHEA, responsibility for determining the safety of the dietary supplements changed from government to the manufacturer and supplements no longer required approval from the U.S. Food and Drug Administration (FDA) before distributing product. Since that time manufacturers did not have to provide FDA with the evidence to substantiate safety or effectiveness unless a new dietary ingredient was added. It is widely believed that the 1994 DSHEA further consolidated the position of the supplement industry and lead to additional product sales.[6]

Carbohydrates provide quick energy in an anaerobic environment (high-intensity exercise), while fats provide sustained energy during periods of high oxygen availability (low-intensity exercise or rest). The breakdown of carbohydrates, fats, and ketones produces ATP (adenosine triphosphate). When cells use ATP for energy, this molecule is converted into adenosine diphosphate (ADP) and adenosine monophosphate (AMP). Creatine exists in cells to donate a phosphate group (energy) to ADP, turning this molecule back into ATP.[20][21][22][23]


A major benefit of the creatine pills is that they are much more convenient than the powder, so you can just throw a few in your bag without worrying about the mess of a powder spill or having to carry the entire tub around. Reviewers confirm that they’ve seen serious strength and muscle size gains since starting to take this supplement, even after just two weeks of use. One bottle of this creatine includes 90 capsules so you will be set for months of lifting sessions.
Before getting into the nitty-gritty details about supplements, it’s important to have a good understanding of how muscle growth works. When you take a muscle growth supplement, the role it plays in helping you reach your goals should be very clear. With the supplements available on the market, you can be sure that while some serve an important purpose, others are gimmicks. It’s easier to identify the money wasters if you know how muscle building works.

By increasing the overall pool of cellular phosphocreatine, creatine supplementation can accelerate the reycling of ADP into ATP. Since ATP stores are rapidly depleted during intense muscular effort, one of the major benefits of creatine supplementation is its ability to regenerate ATP stores faster, which can promote increased strength and power output. Over 95% of creatine is stored in muscle at a maximum cellular concentration of 30uM. Creatine storage capacity is limited, though it increases as muscle mass increases.[24] A 70 kg male with an average physique is assumed to have total creatine stores of approximately 120g.[25] The body can store a lot more energy as glycogen in the liver, brain, and muscles,[26][27] and even more as fat.

Creatine is known to be present in the retina due to the expression of creatine kinase (CK)[466][39] and the GAMT enzyme of creatine synthesis, which is also present in the mammalian retina.[467] Creatine in the blood can be transported into the retina via the creatine transporter (confirmed in humans[468]), and inhibiting transporter activity (by depleting the medium of chloride and sodium) reduces uptake by 80%.[469] The fact that not all uptake was inhibited suggests that another transporter, such as the monocarboxylate transporter MCT12 (or SLC16A12),[470] plays a role, perhaps moreso in the lens, where its levels were comparable to that of the major creatine transporter SLC6A8.[470] 
There have also been concerns that creatine can cause kidney damage, and doctors warn that people with a history of kidney disease or conditions, such as diabetes, that increase the risk of kidney problems should steer clear of the supplement. Combining creatine with nephrotoxic drugs — drugs that might damage the kidneys — like nonsteroidal anti-inflammatory drugs (NSAIDs), such as ibuprofen (advil or motrin) and naproxen sodium (Aleve), should also be avoided, according to the U.S. Department of Health and Human Services. (1)
Sure, using a more effective workout routine or diet plan will work better/faster than a less effective one. However, even when you’re doing everything just right and you’ve optimized every single major and minor factor to work as quickly and effectively as possible (which I’m going to show you how to do), the simple fact is that you’re still not going to build muscle “fast.”
For the bench press, start with a weight that you can lift comfortably. If you are a beginner, try lifting the bar along with 5lbs or 10lbs on each side. With arms at shoulder-width apart, grab onto the bar and slowly lower the bar until it's at nipple level; push up until your arms are fully extended upwards. Do 8–10 repetitions (reps) like this for three sets (3 x 8), adding additional weight each set. Once you have a few months of practice, slowly increase weight and go down to 6–8 reps per set, aiming to reach muscle failure at the end of the third set.

Men appear to have higher active creatine-kinase systems, and racial differences favor black people over hispanic people over white people in terms of the activity of the creatine-kinase system. This system is more variable in men, independent of supplementation. Exercise may increase the activity of the creatine-kinase system independent of supplementation.


Another study found that one week of creatine supplementation at 25 g/day enhanced muscular performance during repeated sets of bench press and jump squat exercise. Creatine supplementation appeared to allow the subjects to complete their workouts at a higher intensity. The researchers concluded that, over time, working at higher intensities may provide a more intense training stimulus and improved muscular adaptations [10].

Forbes, S. C., Sletten, N., Durrer, C., Myette-Côté, E , Candow, D., & Little, J. P. (2017, June). Creatine monohydrate supplementation does not augment fitness, performance, or body composition adaptations in response to four weeks of high-intensity interval training in young females. Human Kinetics Journals, 27(3), 285-292. Retrieved from http://journals.humankinetics.com/doi/abs/10.1123/ijsnem.2016-0129
In isolated striatal cells (expressing creatine kinase), seven day incubation of 5mM creatine (maximal effective dose) appears to increase the density of GABAergic neurons and DARPP-32 (biomarker for spiny neurons[225]) with only a minor overall trend for all cells[226] and showed increased GABA uptake into these cells, as well as providing protection against oxygen and glucose deprivation.[226]

Safety. Excess quantities of antioxidants may produce a ‘pro-oxidant’ effect, which is the opposite of what you would take these supplements for. The Australian Institute of Sport recommends that antioxidant vitamin supplements only be taken for a period of a few weeks while the body adjusts to stressful circumstances. Excess vitamin C may promote excess iron absorption, which may not be healthy for everyone.
The genealogy of lifting can be traced back to the beginning of recorded history[1] where humanity's fascination with physical abilities can be found among numerous ancient writings. In many prehistoric tribes, they would have a big rock they would try to lift, and the first one to lift it would inscribe their name into the stone. Such rocks have been found in Greek and Scottish castles.[2] Progressive resistance training dates back at least to Ancient Greece, when legend has it that wrestler Milo of Croton trained by carrying a newborn calf on his back every day until it was fully grown. Another Greek, the physician Galen, described strength training exercises using the halteres (an early form of dumbbell) in the 2nd century.
Consuming sufficient high-quality protein is essential for building muscle. Current recommendations are to consume a minimum of 0.8g of protein for each kg of body weight, however, this is really only applicable to the average sedentary individual. Current evidence shows that to support muscle development, protein intake is the key, therefore the recommended 0.8g per kg should be increased to 1.5-2.0g of protein per kg of body weight. For an 80 kg individual, that would equate to 120-160 grams of protein per day.
However, not all proteins are created equal in the muscle building stakes. Always remember the better the quality (biological value) of protein consumed, the more of it will be used for muscle building. To maximise muscle growth, stick to high-quality proteins, such as whey, milk, eggs, fish or lean meats. However, combining lower quality or incomplete protein from plant-based sources, such as nuts and beans, can still be a valuable protein source for muscle building.
Beginners are advised to build up slowly to a weight training program. Untrained individuals may have some muscles that are comparatively stronger than others; nevertheless, an injury can result if (in a particular exercise) the primary muscle is stronger than its stabilizing muscles. Building up slowly allows muscles time to develop appropriate strengths relative to each other. This can also help to minimize delayed onset muscle soreness. A sudden start to an intense program can cause significant muscular soreness. Unexercised muscles contain cross-linkages that are torn during intense exercise. A regimen of flexibility exercises should be implemented before weight training begins, to help avoid soft tissue pain and injuries.
A pre-workout may contain a variety of different ingredients, but some common ones include caffeine (energy booster), citruline malate (fatigue killer), creatine (muscle recovery), and beta-alanine (reduces fatigue and gives increased feelings of sensation). If you find you are exhausted and need a little pick me up to power through your workouts, consider implementing a pre-workout supplement into your stack.

Research shows that starting as early as age 30, the body begins to slowly lose muscle mass, with women losing up to 15 percent of their total-body muscle per decade by age 50. Apart from declines in strength, that declining muscle mass comes with a declining metabolism, Emilia Ravski, D.O., a sports medicine specialist with Hoag Orthopedic Institute in California, tells SELF. This decline in metabolic rate is actually one driving factor of the weight that women generally tend to put on after we naturally hit our peak muscle levels in our 20s, research from Tufts University suggests.


Tough workouts drive muscle growth, but they generally cause a lot of damage to your muscles to do so. This damage often results in soreness for several days, which can make it tough to get to the gym or sometimes even move. Many bodybuilding supplements contain ingredients that work to reduce the breakdown of muscle during workouts, making the recovery process easier on the body.
Arginine mainly benefits the body in two ways. The first of these is by producing nitric oxide. When arginine enters the body, some of it gets converted into nitric oxide. Nitric oxide is important for regulating blood pressure, as it can enlarge the blood vessels. Larger blood vessels allow the body to increase blood flow throughout the body, bringing extra nutrients and oxygen to the muscles during exercise.

It is known that intracellular energy depletion (assessed by a depletion of ATP) stimulates AMPK activity in order to normalize the AMP:ATP ratio,[333][334] and when activated AMPK (active in states of low cellular energy[335] and colocalizes with creatine kinase in muscle tissue[336]) appears to inhibit creatine kinase via phosphorylation (preserving phosphocreatine stores but attenuating the rate that creatine buffers ATP). While phosphocreatine technically inhibits AMPK, this does not occur in the presence of creatine at a 2:1 ratio.[334] It seems that if the ratio of phosphocreatine:creatine increases (indicative of excess cellular energy status) that AMPK activity is then attenuated, since when a cell is in a high energy status, there is less AMP to directly activate AMPK.[334][336][337]
×