I HATE that the resistance training community can be so tribal. I have been preaching to bodybuilders for years about the benefits of powerlifting, or Olympic lifting or kettlebells or even Crossfit style conditioning and many have been receptive. Learn from each other and achieve levels of fitness you simply could not have otherwise. Don’t brush off bodybuilding wisdom…it could be the missing factor in your program.

The 100% Grass-Fed Whey Protein Isolate comes in the form of powder and can be mixed with any liquid. While the protein powder can be mixed well with water, try mixing it with milk for added calories and protein. You can even add this to smoothies and baked goods to increase the protein profile. Recommended protein intake for adults is 0.8 grams per kilogram. Some athletes may need as much as 1.2-2 grams protein per kilogram. For your specific needs, always consult a registered dietitian.


Creatine supplementation (11.4g) with glycerol (1g/kg; per se effective[394][395]) and glucose (75g) in endurance runners in the heat appears to attenuate the increase in internal temperature associated with an increase in total body water of 0.71+/-0.42L, while performance (VO2 max and running economy) were unaffected over 30 minutes.[3] Creatine is effective without glycerol (20g daily with 140g of glucose polymer over a week),[346] again without an improvement in physical performance.
The general strategy adopted by most present-day competitive bodybuilders is to make muscle gains for most of the year (known as the "off-season") and, approximately 12–14 weeks from competition, lose a maximum of body fat (referred to as "cutting") while preserving as much muscular mass as possible. The bulking phase entails remaining in a net positive energy balance (calorie surplus). The amount of a surplus in which a person remains is based on the person's goals, as a bigger surplus and longer bulking phase will create more fat tissue. The surplus of calories relative to one's energy balance will ensure that muscles remain in a state of anabolism.

There are countless reasons to lift weights and build strong muscles, including injury prevention, improved bone density, and a lower risk for type 2 diabetes and other diseases—not to forget that bad-ass feeling you get when you can haul a giant piece of furniture up the stairs all by yourself. Another often-cited benefit to strength training is that it will increase your metabolism. But how much does your metabolism increase with strength training? The answer depends on many different factors.


After all, if you’re doing more reps in a set, the weight would obviously be lighter and the intensity level lower. If you’re doing fewer reps in a set, the weight is obviously heavier and the intensity is higher. In addition, how close you come to reaching failure – aka the point in a set when you are unable to complete a rep – also plays a role here.
^ The effect of HMB on skeletal muscle damage has been assessed in studies using four different biomarkers of muscle damage or protein breakdown: serum creatine kinase, serum lactate dehydrogenase, urinary urea nitrogen, and urinary 3-methylhistidine.[38][41][42] When exercise intensity and volume are sufficient to cause skeletal muscle damage, such as during long-distance running or progressive overload, HMB supplementation has been demonstrated to attenuate the rise in these biomarkers by 20–60%.[38][42]
Research shows that strength training is especially effective at raising EPOC. That’s because, generally speaking, strength-training sessions cause more physiological stress to the body compared to cardiovascular exercise, even higher-intensity cardio intervals. However, it’s worth noting that overall exercise intensity is what makes the biggest impact on EPOC. So squats, deadlifts, and bench presses with heavy weights are going to be much more effective at raising EPOC compared to bicep curls and triceps extensions with light weights.
Syndromes caused by problems metabolizing creatine. Some people have a disorder that prevents their body from making creatine. This can lead to low levels of creatine in the brain. Low levels of creatine in the brain can lead to decreased mental function, seizures, autism, and movement problems. Taking creating by mouth daily for up to 3 years can increase creatine levels in the brain in children and young adults with a disorder of creatine production called guanidinoacetate methyltransferase (GAMT) deficiency. This can help improve movement and reduce seizures. But it doesn't improve mental ability. Arginine-glycine amidinotransferase (AGAT) deficiency is another disorder that prevents the body from making creatine. In children with this condition, taking creatine for up to 8 years seems to improve attention, language, and mental performance. But taking creatine does not seem to improve brain creatine levels, movement, or mental function in children who have a disorder in which creatine isn't transported properly.
Arginine mainly benefits the body in two ways. The first of these is by producing nitric oxide. When arginine enters the body, some of it gets converted into nitric oxide. Nitric oxide is important for regulating blood pressure, as it can enlarge the blood vessels. Larger blood vessels allow the body to increase blood flow throughout the body, bringing extra nutrients and oxygen to the muscles during exercise.
A: The literature supports roughly 0.8-1 gram per pound of bodyweight in young adults. Can you eat more? As long as you have healthy, functioning kidneys, yes. Will you receive any further physiological benefit from it? Most likely, no. Not only that, since our calories are set, if we choose to overconsume protein then we must reduce either carbohydrates and/or fat in order to keep caloric expenditure within our set range. Once protein needs are met (~0.8-1g/lb of bodyweight) you will likely see greater benefits from higher carbohydrate consumptions given the influence they have on anabolism and the anaerobic energy pathway. However, as I mentioned above, these recommendations will differ for older trainees given the blunted anabolic response from the ingestion of amino acids. 
When assessing the antioxidant effects of creatine, it does not appear to sequester superoxide and may not be a direct antioxidant.[241] Additionally, creatine failed to protect neurons from H2O2 incubation to induce cell death via pro-oxidative means.[241] These results are in contrast to previously recorded results suggesting creatine acts as a direct anti-oxidant.[242]
Generally, you should consume about 20 grams of protein with some carbs shortly after a workout. During the post-workout anabolic window, you’ll also want to limit fats, which can slow the absorption of protein. While there is some recent research that suggests the window may actually extend up to several hours following exercise, there’s no harm in getting nutrients in early as long as you’re sticking to your overall caloric and macronutrient goals.
Weight trainers commonly spend 5 to 20 minutes warming up their muscles before starting a workout. It is common to stretch the entire body to increase overall flexibility; however, many people stretch just the area being worked that day. The main reason for warming up is injury prevention. Warming up increases blood flow and flexibility, which lessens the chance of a muscle pull or joint pain.
GLUTs are vesicle transporters that are the rate-limiting steps for bringing glucose into a cell, and GLUT4 is the most active variant.[327] Agents that reduce blood glucose (insulin or AMPK) are known to act via mobilizing GLUT4, and increased GLUT4 expression and activity is indicative of a greater ability to bring glucose into a cell, while reducing it impairs glucose uptake.[328] Rat studies have confirmed that creatine feeding increases muscular GLUT4 expression associated with increased insulin-stimulated glucose uptake.[329]

In people with COPD given either glucose placebo (40.7g) or creatine supplementation (5.7g creatine with 35g glucose) thrice daily for two weeks followed by a single dose for ten weeks, supplementation was associated with improvements in muscular strength and endurance, but not cardiovascular exercise potential.[579] A later trial of larger power using a loading phase of 22g creatine with a maintenance phase of 3.76g during rehabilitative exercise failed to replicate the improvements in skeletal muscle performance despite increased body weight seen with creatine,[580] and the failure to improve cardiovascular performance during aerobic exercise seen in both aforementioned studies has been replicated elsewhere after eight weeks supplementation, during which muscular performance was, again, unaffected.[581]
Men appear to have higher active creatine-kinase systems, and racial differences favor black people over hispanic people over white people in terms of the activity of the creatine-kinase system. This system is more variable in men, independent of supplementation. Exercise may increase the activity of the creatine-kinase system independent of supplementation.

A: If your goal is the largest accrual of muscle mass possible then there may be some benefit to ingesting nutrients with a period of 30-60 minutes after your workout. Does this have to be a protein shake? No, but ideally it should be a meal lower in fat to enhance the digest rate of nutrients within the gastrointestinal tract. However, if you have just eaten a mixed macronutrient meal pre-workout then you should keep in mind that that meal is still likely digesting so there’s no need to throw down the weights after your last set and rush to your locker to slam a protein shake.
Weight training has also been shown to benefit dieters as it inhibits lean body mass loss (as opposed to fat loss) when under a caloric deficit. Weight training also strengthens bones, helping to prevent bone loss and osteoporosis. By increasing muscular strength and improving balance, weight training can also reduce falls by elderly persons. Weight training is also attracting attention for the benefits it can have on the brain, and in older adults, a 2017 meta analysis found that it was effective in improving cognitive performance.[38]
Creatine monohydrate is regarded as a necessity by most bodybuilders. Creatine monohydrate is the most cost-effective dietary supplement in terms of muscle size and strength gains. … There is no preferred creatine supplement, but it is believed that creatine works best when it is consumed with simple carbohydrates. This can be accomplished by mixing powdered creatine with grape juice, lemonade, or many high glycemic index drinks.[36]
Taking creatine supplements may increase the amount of creatine in the muscles. Muscles may be able to generate more energy or generate energy at a faster rate. Some people think that taking creatine supplements along with training will improve performance by providing quick bursts of intense energy for activities such as sprinting and weightlifting.
Kilduff, L. P., Georgiades, E., James, N., Minnion, R. H., Mitchell, M., Kingsmore, D., Hadjicharlambous, M., and Pitsiladis, Y. P. The effects of creatine supplementation on cardiovascular, metabolic, and thermoregulatory responses during exercise in the heat in endurance-trained humans. Int J Sport Nutr Exerc Metab 2004;14(4):443-460. View abstract.
Bird, L. M., Tan, W. H., Bacino, C. A., Peters, S. U., Skinner, S. A., Anselm, I., Barbieri-Welge, R., Bauer-Carlin, A., Gentile, J. K., Glaze, D. G., Horowitz, L. T., Mohan, K. N., Nespeca, M. P., Sahoo, T., Sarco, D., Waisbren, S. E., and Beaudet, A. L. A therapeutic trial of pro-methylation dietary supplements in Angelman syndrome. Am J Med Genet.A 2011;155A(12):2956-2963. View abstract.
This amino acid is actually produced by your body and so is considered a non-essential amino acid. However, in addition to taking it in supplement form, beta-alanine is also found in protein-heavy foods like meat and fish (9). This amino acid has been linked to performance enhancement outcomes, especially for weightlifters. Studies show increased performance when taking this supplement.
A meta-analysis of 16 studies conducted on creatine and its influence on power and strength,[368][369] (with or without exercise in all age groups above 16, but placebo controlled and without crossover[368]) compiled studies utilizing a 5-7 day loading period with continued maintenance thereafter and studies assessing 1-3 rep bench press strength in trained young men. Seven studies (four of which are online[370][371][372][373]) totaling 70 people using creatine and 73 people in placebo showed a 6.85kg increase in strength relative to placebo, the benefits of which peaked at 8 weeks.[368] This meta-analysis also quantified a significant increase in squat strength (9.76kg) yet failed to find a significant influence on peak bicep contraction power, which may have been influenced by the two null studies[374][375] being in elderly people while the positive study[376] was statistically outweighed, but noted an 1.8-fold increase in power associated with creatine over placebo. The other meta-analysis conducted the following year[369] calculated effect sizes for creatine supplementation and noted no significant differences between genders or when comparing trained and untrained individuals. The mean effect size of exercises lasting below 30s (those that use the creatine-phosphate system) was 0.24+/-0.02 and performed significantly better than placebo, where exercise increased performance by 4.2+/-0.6% while the addition of creatine enhanced this effect to 7.5+/-0.7%.[369]
Long popular among bodybuilders, casein protein absorbs slowly into the bloodstream, meaning it keeps your muscles fed with amino acids for longer compared to other types of protein such as whey and plant proteins. In one Medicine and Science in Sports and Exercise study, consuming casein protein immediately before bed boosted young men’s levels of circulating amino acids for 7.5 hours; they built muscle all night long while they slept.
Macrophages are known to express creatine kinase[290] and take creatine up from a medium through a sodium dependent mechanism (likely the creatine transporter) in a saturable manner,[435] with a second component that requires there to be no concentration gradient to work against (likely passive diffusion) but this effect tends to only account for up to 10% of total uptake in the physiological range (20-60µM).[435] Supraphysiological range was not tested.
Research shows that strength training is especially effective at raising EPOC. That’s because, generally speaking, strength-training sessions cause more physiological stress to the body compared to cardiovascular exercise, even higher-intensity cardio intervals. However, it’s worth noting that overall exercise intensity is what makes the biggest impact on EPOC. So squats, deadlifts, and bench presses with heavy weights are going to be much more effective at raising EPOC compared to bicep curls and triceps extensions with light weights.
×