D-aspartic acid can also help to reduce cortisol levels. Cortisol is known as the “stress” hormone because its production increases during stressful situations. High cortisol levels can have many negative side effects, such as weight gain, muscle tissue breakdown, or increased blood sugar. Taking a supplement that includes cortisol can reduce stress and prevent excess fat storage or muscle loss.

Moreover, the Food and Drug Administration (FDA) has identified numerous products marketed as bodybuilding or muscle-building dietary supplements that contain hidden active ingredients, including prescription drugs and steroid and steroid-like ingredients. Not only do these ingredients pose serious health risks, they might cause you to pop positive on a drug test. The only way to be sure a product contains only what’s on the label is to look for one that has been evaluated by an independent, third-party organization. For more information, visit FDA’s Consumer Update about bodybuilding products.

Sports where strength training is central are bodybuilding, weightlifting, powerlifting, and strongman, highland games, hammer throw, shot put, discus throw, and javelin throw. Many other sports use strength training as part of their training regimen, notably: American football, baseball, basketball, football, hockey, lacrosse, mixed martial arts, rowing, rugby league, rugby union, track and field, boxing and wrestling.
Without supplementation, approximately 14.6mmol (2g) of creatinine, creatine’s urinary metabolite, is lost on a daily basis in a standard 70kg male ages 20-39. The value is slightly lower in females and the elderly due to a presence of less muscle mass.[35] This amount is considered necessary to obtain in either food or supplemental form to avoid creatine deficiency. Requirements may be increased in people with higher than normal lean mass.[35][198] Creatine excretion rates on a daily basis are correlated with muscle mass, and the value of 2g a day is derived from the aforementioned male population with about 120g creatine storage capacity.[35] Specifically, the rate of daily creatine losses is about 1.6%[199]-1.7%,[25] and mean losses for women are approximately 80% that of men due to less average lean mass.[35] For weight-matched elderly men (70kg, 70-79 years of age) the rate of loss of 7.8mmol/day,[49] or about half (53%) that of younger men.
The body's pool of creatine can be replenished either from food (or supplements) or through synthesis from precursor amino acids. Dietary sources include beef, tuna, cod, salmon, herring, and pork [2]. The normal dietary intake of creatine is 1-2 g/day, although vegetarians may consume less [3,4]. Dietary creatine is absorbed from the intestines into the bloodstream. If the dietary supply is limited, creatine can be synthesized from the body stores of the amino acids glycine, arginine, and methionine. The kidneys use glycine and arginine to make guanidinoacetate, which the liver methylates to form creatine [1], which is transported to the muscle cells for storage. It is also stored in the kidneys, sperm cells, and brain tissue [5].
There are many camps within the weight training fitness community. We have bodybuilders, Crossfit athletes, powerlifters, Olympic lifters, and strongman athletes just to name the most popular ones off the top of my head. One thing they all have in common is that they all use resistance to achieve a particular goal. They all also “share” particular exercises. Most resistance-training athletes do barbell squats, overhead presses and deadlifts. I can write pages of differences between each of the disciplines I listed above and I can also write quite a bit about their similarities but one form of resistance training is MORE different than the others. Bodybuilding is the only sport that judges the appearance of the athlete rather than their performance. This may be why bodybuilders tend to get poked at the most.

In well-trained endurance runners, creatine (with glycerol for hyperhydration) caused a relatively large increase in body weight gain (0.90+/-0.40kg) and water weight (0.71+/-0.42L) but failed to negatively influence performance over 30 minutes in the heat.[3] This failure to improve physical performance in the heat with creatine loading (despite water retention) has been noted elsewhere.[346]
Exercise is highly effective in increasing your lean body mass, which is essentially muscle. In a study published in 2012, progressive resistance training helped men ages 50 to 83 gain an average of 2.4 pounds of lean body mass over an average of 20.5 weeks. Progressive resistance training involves performing weight bearing exercises. In addition, you must slowly increase the challenge of the exercise over time by increasing the weight, reps and/or sets. Studies show that either increasing reps or weight amount will work. So, if you don’t want to lift more weight, you can just do more reps and still build muscle.
Heath bent his legs — each thigh about 32 inches around, bigger than his waist — and lifted the black case. Inside was his latest Mr. Olympia trophy. In bodybuilding, it is called the Sandow, and Heath has won the last six, most recently in Las Vegas in September. Arnold Schwarzenegger, still the world’s most famous bodybuilder, won six in a row, too, and then a seventh a few years later. Two men, Lee Haney and Ronnie Coleman, have won eight.
A loading phase of 10g creatine monohydrate for two weeks and 4g for the final week in subjects with MELAS (Mitochondrial Encephalomyopathy Lactic Acidosis and Stroke-like episodes) has been noted to increase physical strength relative to baseline, although the poor VO2 max seen in these subjects was not affected.[549] A case study exists in which a patient with a relatively novel mutation in their mitochondrial function (affecting cytochrome B) experienced benefits from creatine at 10g daily.[550] Researchers examining another case of MELAS found both cognitive and physical benefits with 5g creatine supplementation,[551] while four controlled case studies of 100-200mg/kg daily in children with myopathies found improved muscular endurance (30-57%) and muscular power (8-17%) after 100-200mg/kg daily for at least three months.[552]

It is possible that females could benefit more than males due to a combined lower creatine kinase activity as well as having altered purine metabolism during depression,[257] but no human comparative studies have been conducted yet. One rat study noted that creatine monohydrate at 2-4% of feed had 4% creatine able to exert anti-depressive and anxiolytic effects in female rats only.[228]


A maintenance phase of 2g daily appears to technically preserve creatine content in skeletal muscle of responders either inherently or after a loading phase, but in sedentary people or those with light activity, creatine content still progressively declines (although it still higher than baseline levels after six weeks) and glycogen increases seem to normalize. This maintenance dose may be wholly insufficient for athletes, a 5g maintenance protocol may be more prudent.

Creatine is normally metabolized into creatinine (note the difference in spelling), which is eliminated by the kidneys under normal conditions. When the kidneys fail and cannot clear the blood as effectively, many metabolites get “backlogged” in the blood. Creatinine is easy to measure and as such it is a biomarker of kidney damage.[623][624] If serum creatinine levels are elevated, the doctor may suspect some kidney damage. Low-dose creatine (≤5 g/day) may not cause alterations in this biomarker in otherwise normal adults[524][625][525] but high doses of supplemental creatine may cause a false positive (an increase in creatinine, due to creatine turning into creatinine, which does not signify kidney damage) and is a diagnostic error.[520][518][626][523][517] Most studies, however, have noted only a small increase in creatinine levels even with doses ≈20 g/day.[524][626][627]
McArdle’s disease is a myopathy associated with impaired glucose release from glycogen and impairments in muscle function at times when glucose would be the primary energy substrate. Creatine is thought to be therapeutic, but has shown differing effects in the two trials so far (both benefit and worsening of symptoms) for currently unknown reasons.

There are several ways to enhance the quality of a workout, and some changes can even be made during each rep. “Constant tension should be applied to the last five reps of every working set, meaning, do the first 5-6 reps normal tempo, and the last few reps should be held for at least two seconds at the peak of the contraction,” says Heath. “This allows your muscles to have more time under tension and you work different muscle fibers.” Hold the weight at the top for a maximum pump.
In addition to being potentially harmful, some have argued that there is little evidence to indicate any benefit to using bodybuilding protein or amino acid supplements. "In view of the lack of compelling evidence to the contrary, no additional dietary protein is suggested for healthy adults undertaking resistance or endurance exercise".[18] In dispute of this, one more recent meta-analysis concluded that for athletes participating in resistance exercise training and consuming protein supplements for an average of 13 weeks, total protein intake up to 1.6 g per kg body weight per day would result in an increase in strength and fat-free mass, i.e. muscle, but that higher intakes would not further contribute. The muscle mass increase was statistically significant but modest - averaging 0.3 for all trials and 1.0 to 2.0 kg, for protein intake ≥ 1.6 g/kg/day.[3]
Creatine is involved indirectly in whole body methylation processes. This is due to creatine synthesis having a relatively large methyl cost, as the creatine precursor known as guanidinoacetate (GAA) requires a methyl donation from S-adenosyl methionine (SAMe) in order to produce creatine. This may require up to half of the methyl groups available in the human body.[35][122]
If you're a serious strength or physique athlete, you've surely heard that supplements can help you get the most from your intense training sessions and on-point diet. But which supplements? The market is overstuffed like a bodybuilder in a child's blazer! You might be tempted to wander through a digital forest of get-big blogs and personal guru websites, but unfortunately those places can often be rife with misinformation.

Don’t get us wrong—cardio is important for keeping your body fat down and keeping your heart health in check. (Bonus points if you run or bike, since outdoor exercise is linked to better energy and improved mental health.) But when it comes to building muscle, hitting the treadmill won't help you much. “Every component of exercise, minus cardio, can help with muscle hypertrophy,” which is the scientific term for muscle building, says Michelle Lovitt, an exercise physiologist and trainer in Los Angeles. “Cardio tends to burn calories and puts your body in a deficit, which is great for leaning out, but not building mass.”


But muscle can’t turn into fat, just like mud can’t turn into gold. If you quit lifting, your muscles mass will decrease over time because there’s no training to stimulate your body to keep it. And your body-fat level will increase if you don’t start eating less (since you burn less). The obvious solution when you stop lifting is to also stop eating so much.
Activation of NMDA receptors is known to stimulate Na+,K+-ATPase activity[218] secondary to calcineurin,[219] which which has been confirmed with creatine in hippocampal cells (0.1-1mM trended, but 10mM was significant). This is blocked by NMDA antagonists.[220] This increase in Na+,K+-ATPase activity is also attenauted with activation of either PKC or PKA,[220] which are antagonistic with calcineurin.[219][221]

Don’t take sets to the point of failure—where you absolutely can’t perform another rep. You should never get to where you’re turning purple and screaming like you’re getting interviewed by “Mean” Gene Okerlund before WrestleMania. Most of the time, you want to end your sets two reps before total failure. Not sure when that is? The moment your form breaks down, or you’re pretty sure it’s going to break down, end the set.
Carducci, C., Birarelli, M., Leuzzi, V., Carducci, C., Battini, R., Cioni, G., and Antonozzi, I. Guanidinoacetate and creatine plus creatinine assessment in physiologic fluids: an effective diagnostic tool for the biochemical diagnosis of arginine:glycine amidinotransferase and guanidinoacetate methyltransferase deficiencies. Clin Chem 2002;48:1772-1778. View abstract.
In otherwise healthy adults subject to leg immobilization for two weeks while taking 20g creatine daily during immobilization and then 5g daily during eight weeks of rehabilitation, it was noted that the creatine group failed to reduce atrophy during the immobilization (10% reduction in cross sectional area and 22-25% reduction in force output) despite preventing a decrease in phosphocreatine, yet experienced a significantly enhanced rate of regrowth and power recovery.[358] A similarly structured and dosed study has also noted greater expression of skeletal muscle, GLUT4 expression, and a 12% increase in muscle phosphocreatine content.[330]

Now that you've got the training part down, it's time to stretch it out. (Can you say ahhh?) Stretching while your muscles are warm can help improve your flexibility, says Davis, not to mention it just feels phenomenal after you've pushed yourself hard. A light cool-down is also great for calming the nervous system. While dynamic stretches should be your go-to during a warm-up, the cool-down is where static stretching comes in—this means holding a stretch for 20-30 seconds. These four passive stretches will do nicely.
In vitro, creatine (0.125mM or higher) can reduce excitotoxicity from glutamate, which is thought to be secondary to preserving intracellular creatine phosphate levels.[209] Glutamate-induced excitotoxicity is caused by excessive intracellular calcium levels resulting from ATP depletion. Since high levels of calcium inside the cell are toxic, ATP preserves membrane integrity,[210] in part by promoting calcium homeostasis. When ATP is depleted, the sodium-potassium ATPase pump (Na+,K+-ATPase) stops working, leading to sodium accumulation in the cell. This reduces the activity of the sodium-calcium exchange pump, which, alongside a lack of ATP, reduces calcium efflux through the Na+,K+-ATPase. Thus, ATP depletion leads to intracellular calcium overload, loss of membrane potential, and excitotoxic cell death. Therefore, by helping preserve ATP levels, creatine is protective against excitotoxicity. This protective effect was noted after either creatine preloading or addition up to 2 hours after excitotoxicity.[209] Protection from glutamate-induced toxicity also extends to glial cells[211] and is additive with COX2 inhibition.[212]
A typical creatine supplementation protocol of either a loading phase of 20 to 25 g CM/d or 0.3 g CM/kg/d split into 4 to 5 daily intakes of 5 g each have been recommended to quickly saturate creatine stores in the skeletal muscle. However a more moderate protocol where several smaller doses of creatine are ingested along the day (20 intakes of 1 g every 30 min) could be a better approach to get a maximal saturation of the intramuscular creatine store. In order to keep the maximal saturation of body creatine, the loading phase must be followed by a maintenance period of 3-5 g CM/d or 0.03 g CM/kg/d. These strategies appear to be the most efficient way of saturating the muscles and benefitting from CM supplementation. However more recent research has shown CM supplementation at doses of 0.1 g/kg body weight combined with resistance training improves training adaptations at a cellular and sub-cellular level. Creatine retention by the body from supplementation appears to be promoted by about 25% from the simultaneous ingestion of carbohydrate and/or protein mediated through an increase in insulin secretion. This combination would produce a faster saturation rate but has not been shown to have a greater effect on performance.
Weight training also requires the use of 'good form', performing the movements with the appropriate muscle group, and not transferring the weight to different body parts in order to move greater weight (called 'cheating'). Failure to use good form during a training set can result in injury or a failure to meet training goals; since the desired muscle group is not challenged sufficiently, the threshold of overload is never reached and the muscle does not gain in strength. At a particularly advanced level; however, "cheating" can be used to break through strength plateaus and encourage neurological and muscular adaptation.
I mean the first two ‘BS’ items focal point is lifting heavy, and then immediately the article goes into Step 1 – focus on 5-10 rep and 6-8 rep (heavier sets) — given we’re not powerlifting 1 rep or 3 rep max. Generally 6 rep sets we’re lifting heavy still… Does have a lot of good general info, but to me it almost feels like the bullet points of what supposedly not to do is actually a table of contents of what Jason is recommending we do do throughout the article…
Age-related muscle loss: Many different dosing regimens have been used; however, most use a short-term “loading dose” followed by a long-term maintenance dose. Loading doses are typically 20 grams daily for 4-7 days. Maintenance doses are typically 2-10 grams daily. Older adults seem to only experience benefits from creatine supplementation when it is combined with resistance training.
Nephrotoxic drugs. Because taking high doses of creatine might harm your kidneys, there is concern about combining creatine with drugs that might damage the kidneys (nephrotoxic drugs). Potentially nephrotoxic drugs include nonsteroidal anti-inflammatory drug (NSAIDs) such as ibuprofen (Advil, Motrin IB, others) and naproxen sodium (Aleve, others), cyclosporine (Neoral, Sandimmune) and others.
If you want to take creatine as a supplement for bigger and stronger muscles, then the standard protocol is to have a “loading period” where you significantly increase your creatine intake for a few days or weeks. “This can prime your muscles to increase the amount of creatine that they ‘hold,’” explains Bates. “During the loading period, you generally take 5 g of creatine four times per day. After the loading period, you decrease the amount of creatine you take to a ‘maintenance’ level of 3 to 5 g per day.” (That’s also the recommendation from the International Society of Sports Nutrition.) (5)
Peirano, R. I., Achterberg, V., Dusing, H. J., Akhiani, M., Koop, U., Jaspers, S., Kruger, A., Schwengler, H., Hamann, T., Wenck, H., Stab, F., Gallinat, S., and Blatt, T. Dermal penetration of creatine from a face-care formulation containing creatine, guarana and glycerol is linked to effective antiwrinkle and antisagging efficacy in male subjects. J.Cosmet.Dermatol. 2011;10(4):273-281. View abstract.
Cooke et al [41] observed positive effects of a prior (0.3 g/d kg BW) loading and a post maintenance protocol (0.1 g/d kg BW) to attenuate the loss of strength and muscle damage after an acute supramaximal (3 set x 10 rep with 120% 1RM) eccentric resistance training session in young males. The authors speculate that creatine ingestion prior to exercise may enhance calcium buffering capacity of the muscle and reduce calcium-activated proteases which in turn minimize sarcolemma and further influxes of calcium into the muscle. In addition creatine ingestion post exercise would enhance regenerative responses, favoring a more anabolic environment to avoid severe muscle damage and improve the recovery process. In addition, in vitro studies have demonstrated the antioxidant effects of creatine to remove superoxide anion radicals and peroxinitrite radicals [42]. This antioxidant effect of creatine has been associated with the presence of Arginine in its molecule. Arginine is also a substrate for nitric oxide synthesis and can increase the production of nitric oxide which has higher vasodilatation properties, and acts as a free radical that modulates metabolism, contractibility and glucose uptake in skeletal muscle. Other amino acids contained in the creatine molecule such as glycine and methinine may be especially susceptible to free radical oxidation because of sulfhydryl groups [42]. A more recent in vitro study showed that creatine exerts direct antioxidant activity via a scavenging mechanism in oxidatively injured cultured mammalian cells [43]. In a recent in vivo study Rhaini et al [44] showed a positive effect of 7 days of creatine supplementation (4 x 5 g CM 20 g total) on 27 recreational resistance trained males to attenuate the oxidation of DNA and lipid peroxidation after a strenuous resistance training protocol.
Although some have voiced concerns about kidney damage with creatine supplementation, it’s generally regarded as a safe supplement when taken responsibly. The Mayo Clinic advises against taking it if you have an allergy. When used properly, the incidence of potential side effects such as low blood sugar and dehydration, are minor in healthy people taking a safe dosage.
It is prudent to note that creatine supplementation has been shown to reduce the body’s endogenous production of creatine, however levels return to normal after a brief period of time when supplementation ceases [1,6]. Despite this creatine supplementation has not been studied/supplemented with for a relatively long period. Due to this, long term effects are unknown, therefore safety cannot be guaranteed. Whilst the long term effects of creatine supplementation remain unclear, no definitive certainty of either a negative or a positive effect upon the body has been determined for many health professionals and national agencies [19,78]. For example the French Sanitary Agency has banned the buying of creatine due to the unproven allegation that a potential effect of creatine supplementation could be that of mutagenicity and carcinogenicity from the production of heterocyclic amines [78]. Long term and epidemiological data should continue to be produced and collected to determine the safety of creatine in all healthy individuals under all conditions [78].
This claim has not been demonstrated at this time, and a recent comparative study of buffered creatine against basic creatine monohydrate found no significant differences between the two in 36 resistance trained individuals, in regard to the effects or the accumulation of creatine in muscle tissue.[71] There also were no significant differences in the amount of adverse side-effects reported.
Because so many product labels list scientific references to back up the manufacturers' claims of performance and efficacy, or effectiveness, it's important to understand what constitutes a solid scientific study. A single study, even an optimally designed one, isn't considered scientific proof. The results have to be replicated several times before they're officially accepted as fact.

These effects were noted before in a preliminary study of depressed adolescents (with no placebo group) showing a 55% reduction in depressive symptoms at 4g daily when brain phosphocreatine levels increased.[231] Other prelimnary human studies suggest creatine might lessen unipolar depression[256] and one study on Post-Traumatic Stress Disorder (PTSD) noted improved mood as assessed by the Hamilton Depression Rating Scale.[232]
×