In the last week leading up to a contest, bodybuilders usually decrease their consumption of water, sodium, and carbohydrates, the former two to alter how water is retained by the body and the latter to reduce glycogen in the muscle. The day before the show, water is removed from the diet, and diuretics may be introduced, while carbohydrate loading is undertaken to increase the size of the muscles through replenishment of their glycogen. The goal is to maximize leanness and increase the visibility of veins, or "vascularity". The muscular definition and vascularity are further enhanced immediately before appearing on stage by darkening the skin through tanning products and applying oils to the skin to increase shine. Some competitors will eat sugar-rich foods to increase the visibility of their veins. A final step, called "pumping", consists in performing exercises with light weights or other kinds of low resistance (for instance two athletes can "pump" each other by holding a towel and pulling in turn), just before the contest, to fill the muscles with blood and further increase their size and density.
Weight training aims to build muscle by prompting two different types of hypertrophy: sarcoplasmic and myofibrillar. Sarcoplasmic hypertrophy leads to larger muscles and so is favored by bodybuilders more than myofibrillar hypertrophy, which builds athletic strength. Sarcoplasmic hypertrophy is triggered by increasing repetitions, whereas myofibrillar hypertrophy is triggered by lifting heavier weight.[23] In either case, there is an increase in both size and strength of the muscles (compared to what happens if that same individual does not lift weights at all), however, the emphasis is different.
Creatine is not an essential nutrient[19] as it is naturally produced in the human body from the amino acids glycine and arginine, with an additional requirement for methionine to catalyze the transformation of guanidinoacetate to creatine. In the first step of the biosynthesis these two amino acids are combined by the enzyme arginine:glycine amidinotransferase (AGAT, EC: to form guanidinoacetate, which is then methylated by guanidinoacetate N-methyltransferase (GAMT, EC:, using S-adenosyl methionine as the methyl donor. Creatine itself can be phosphorylated by creatine kinase to form phosphocreatine, which is used as an energy buffer in skeletal muscles and the brain.
Syrotuik and Bell [57] investigated the physical characteristics of responder and non-responder subjects to creatine supplementation in recreationally resistance trained men with no history of CM usage. The supplement group was asked to ingest a loading dosage of 0.3 g/kg/d for 5 days. The physiological characteristics of responders were classified using Greenhaff et al [58] criterion of >20 mmol/kg dry weight increase in total intramuscular creatine and phosphocreatine and non responders as <10 mmol/kg dry weight increase, a third group labeled quasi responders were also used to classify participants who fell in between the previously mentioned groups (10-20 mmol/kg dry weight). Overall, the supplemented group showed a mean increase in total resting muscle creatine and phosphocreatine of 14.5% (from 111.12 ± 8.87 mmol/kg dry weight to 127.30 ± 9.69 mmol/kg dry weight) whilst the placebo group remained relatively unaffected (from 115.70 ± 14.99 mmol/kg dry weight to 111.74 ± 12.95 mmol/kg dry weight). However when looking at individual cases from the creatine group the results showed a variance in response. From the 11 males in the supplemented group, 3 participants were responders (mean increase of 29.5 mmol/kg dry weight or 27%), 5 quasi responders (mean increase of 14.9 mmol/kg dry weight or 13.6%) and 3 non-responders (mean increase of 5.1 mmol/kg dry weight or 4.8%). Using muscle biopsies of the vastus lateralis, a descending trend for groups and mean percentage fiber type was observed. Responders showed the greatest percentage of type II fibers followed by quasi responders and non-responders. The responder and quasi responder groups had an initial larger cross sectional area for type I, type IIa and type IIx fibers. The responder group also had the greatest mean increase in the cross sectional area of all the muscle fiber types measured (type I, type IIa and type IIx increased 320, 971 and 840 μm2 respectively) and non-responders the least (type I, type IIa and type IIx increased 60, 46 and 78 μm2 respectively). There was evidence of a descending trend for responders to have the highest percentage of type II fibers; furthermore, responders and quasi responders possessed the largest initial cross sectional area of type I, IIa and IIx fibers. Responders were seen to have the lowest initial levels of creatine and phosphocreatine. This has also been observed in a previous study [17] which found that subjects whose creatine levels were around 150 mmol/Kg dry mass did not have any increments in their creatine saturation due to creatine supplementation, neither did they experience any increases of creatine uptake, phosphocreatine resynthesis and performance. This would indicate a limit maximum size of the creatine pool.
In people whose kidneys don’t function optimally, supplemental creatine seems to be safe, too.[513][518][313][528] However, studies in people with suboptimal kidney function are fewer than in healthy people, and they are short-term. People with kidney dysfunction, or at risk for developing kidney dysfunction (e.g., people with diabetes, high blood pressure, or family history of kidney disease; people over sixty; and non-Hispanic blacks), might wish to forgo creatine, or otherwise take only the lowest effective dose (3 g/day)[527] after talking to their doctor.
You're aiming to kick start muscle hypertrophy, the cellular process that spurs growth. Researchers have found that the best way to initiate that process is by performing two or three sets of an exercise for six to 12 repetitions, with about 30 to 60 seconds' rest between sets. You're damaging the muscles with the work — then the protein you've been consuming will help build them back up even bigger.

Creatine is a hydrophilic polar molecule that consists of a negatively charged carboxyl group and a positively charged functional group [64]. The hydrophilic nature of creatine limits its bioavailability [65]. In an attempt to increase creatines bioavailability creatine has been esterified to reduce the hydrophilicity; this product is known as creatine ethyl ester. Manufacturers of creatine ethyl ester promote their product as being able to by-pass the creatine transporter due to improved sarcolemmal permeability toward creatine [65]. Spillane et al [65] analyzed the effects of a 5 days loading protocol (0.30 g/kg lean mass) followed by a 42 days maintenance phase (0.075 g/kg lean mass) of CM or ethyl ester both combined with a resistance training program in 30 novice males with no previous resistance training experience. The results of this study [65] showed that ethyl ester was not as effective as CM to enhance serum and muscle creatine stores. Furthermore creatine ethyl ester offered no additional benefit for improving body composition, muscle mass, strength, and power. This research did not support the claims of the creatine ethyl ester manufacturers.

Mercimek-Mahmutoglu, S., Stoeckler-Ipsiroglu, S., Adami, A., Appleton, R., Araujo, H. C., Duran, M., Ensenauer, R., Fernandez-Alvarez, E., Garcia, P., Grolik, C., Item, C. B., Leuzzi, V., Marquardt, I., Muhl, A., Saelke-Kellermann, R. A., Salomons, G. S., Schulze, A., Surtees, R., van der Knaap, M. S., Vasconcelos, R., Verhoeven, N. M., Vilarinho, L., Wilichowski, E., and Jakobs, C. GAMT deficiency: features, treatment, and outcome in an inborn error of creatine synthesis. Neurology 8-8-2006;67:480-484. View abstract.
Foundational supplements are often overlooked for building muscle, because they work behind the scenes. In actuality, foundational supplements are important to take for building muscle, because they assist with overall health and wellness and contribute to the effectiveness of other muscle building supplements.* Some of the top foundational supplements are:
Syndromes caused by problems metabolizing creatine. Some people have a disorder that prevents their body from making creatine. This can lead to low levels of creatine in the brain. Low levels of creatine in the brain can lead to decreased mental function, seizures, autism, and movement problems. Taking creating by mouth daily for up to 3 years can increase creatine levels in the brain in children and young adults with a disorder of creatine production called guanidinoacetate methyltransferase (GAMT) deficiency. This can help improve movement and reduce seizures. But it doesn't improve mental ability. Arginine-glycine amidinotransferase (AGAT) deficiency is another disorder that prevents the body from making creatine. In children with this condition, taking creatine for up to 8 years seems to improve attention, language, and mental performance. But taking creatine does not seem to improve brain creatine levels, movement, or mental function in children who have a disorder in which creatine isn't transported properly.
Studies with animal and cellular models demonstrated positive effect of creatine ingestion on neurodegenerative diseases. These effects have been attributed to improved overall cellular bioenergetics due to an expansion of the phosphocreatine pool [50]. Creatine deficiency syndromes, due to deficiency of glycine amidinotransferase and guanidinoacetate methyltransferase, can cause decreases or complete absence of creatine in the central nervous system. Syndromes of this nature have the possibility to be improved by supplementing orally with creatine. Brain creatine deficiency resulting from ineffective crea T1 has been shown not to be effectively treated with oral creatine supplementation [51]. Additionally, oral creatine administration in patients with myopathies has shown conflicting results depending on the type of myopathy and creatine transport systems disorders [4].
Side-Effects: While the signs of a great body may make one think that there cannot be anything wrong with bodybuilding supplements, the facts speak otherwise. Bodybuilding supplements do have side-effects and you must listen to your trainer before giving in to the thoughts of buying one. Creatine can cause heart problems, kidney problems, dehydration, diarrhoea and muscle cramping. You must also discuss your medical history with the trainer. 

One of the biggest goals of bodybuilders is to increase their muscle size and strength. Bodybuilding supplements often contain many ingredients that help to encourage this. Branched-chain amino acids are a common ingredient that can significantly increase muscle growth. Other ingredients help to increase the levels of hormones, such as growth hormone and testosterone, that can also stimulate muscle growth.
“Don't get set into one form, adapt it and build your own, and let it grow. Be like water. Empty your mind, be formless, shapeless — like water. Now you put water in a cup, it becomes the cup; You put water into a bottle it becomes the bottle; You put it in a teapot it becomes the teapot. Now water can flow or it can crash. Be water, my friend.” Bruce Lee

No. It’s not easy for everyone to get the recommended amount of protein in their diets through good eating habits alone. Others may not have clinically low testosterone, but still benefit from boosting their levels to improve their muscle building capacity. You can fix these common problems through muscle building supplements. These easy to take pills and powders can also help you boost your performance at the gym which will, in turn, spur your body’s muscle building and recovery response.