Nutrient timing is a hot topic, especially for athletes and anyone looking for that extra edge in the gym or in body transformation. Part of this stems from science showing that the timing of carbohydrate consumption does influence important aspects, such as glycogen replenishment (and in limited cases, muscle protein synthesis). The other side is practical: You want the most bang for your buck when it comes to the nutritional products and supplements you purchase.
Syrotuik and Bell [57] investigated the physical characteristics of responder and non-responder subjects to creatine supplementation in recreationally resistance trained men with no history of CM usage. The supplement group was asked to ingest a loading dosage of 0.3 g/kg/d for 5 days. The physiological characteristics of responders were classified using Greenhaff et al [58] criterion of >20 mmol/kg dry weight increase in total intramuscular creatine and phosphocreatine and non responders as <10 mmol/kg dry weight increase, a third group labeled quasi responders were also used to classify participants who fell in between the previously mentioned groups (10-20 mmol/kg dry weight). Overall, the supplemented group showed a mean increase in total resting muscle creatine and phosphocreatine of 14.5% (from 111.12 ± 8.87 mmol/kg dry weight to 127.30 ± 9.69 mmol/kg dry weight) whilst the placebo group remained relatively unaffected (from 115.70 ± 14.99 mmol/kg dry weight to 111.74 ± 12.95 mmol/kg dry weight). However when looking at individual cases from the creatine group the results showed a variance in response. From the 11 males in the supplemented group, 3 participants were responders (mean increase of 29.5 mmol/kg dry weight or 27%), 5 quasi responders (mean increase of 14.9 mmol/kg dry weight or 13.6%) and 3 non-responders (mean increase of 5.1 mmol/kg dry weight or 4.8%). Using muscle biopsies of the vastus lateralis, a descending trend for groups and mean percentage fiber type was observed. Responders showed the greatest percentage of type II fibers followed by quasi responders and non-responders. The responder and quasi responder groups had an initial larger cross sectional area for type I, type IIa and type IIx fibers. The responder group also had the greatest mean increase in the cross sectional area of all the muscle fiber types measured (type I, type IIa and type IIx increased 320, 971 and 840 μm2 respectively) and non-responders the least (type I, type IIa and type IIx increased 60, 46 and 78 μm2 respectively). There was evidence of a descending trend for responders to have the highest percentage of type II fibers; furthermore, responders and quasi responders possessed the largest initial cross sectional area of type I, IIa and IIx fibers. Responders were seen to have the lowest initial levels of creatine and phosphocreatine. This has also been observed in a previous study [17] which found that subjects whose creatine levels were around 150 mmol/Kg dry mass did not have any increments in their creatine saturation due to creatine supplementation, neither did they experience any increases of creatine uptake, phosphocreatine resynthesis and performance. This would indicate a limit maximum size of the creatine pool.
In otherwise healthy bodybuilders, supplementation of creatine at 5g either immediately before or after a weight training session (with no directive on days without training) over the course of four weeks noted that while both groups improved, there was no significant difference between groups overall.[384] This null result has been found in another study with 0.1g/kg creatine thrice weekly over 12 weeks in otherwise healthy adults.[385] It has been suggested that post-workout timing may be favorable (based on magnitude-based inference) since more individuals experience benefits with post-workout when compared to pre-workout despite no whole-group differences.[384] 
Creatine concentration is normally increased in the placenta and brain in the midgestation phase until term, with further increases in the brain for another two weeks after birth.[529] This effect appears to be due to the fetus itself expressing the creatine enzymes of synthesis (AGAT and GAMT) after 5% of the gestation time has passed (0.9 days in spiny mice).[529] Despite creatine normally suppressing AGAT when supplemented at high concentrations,[29][30] it appears that maternal supplementation of the diet with 5% creatine from the halfway point of pregnancy until term does not alter creatine synthesis in the newborn (no alterations in either AGAT or GAMT), nor does it affect the creatine transporter.[530] 
Glycogen synthesis is known to respond directly and positively to cellular swelling. This was demonstrated in an earlier study, during which rat muscle cells were exposed to a hypotonic solution in vitro to induce cell swelling, which increased glycogen synthesis by 75%. In contrast, exposing these same cells to a hypertonic solution hindered glycogen synthesis by 31%. These changes were not due to alterations in glucose uptake, but are blocked by hindering the PI3K/mTOR signaling pathway.[112] It was later noted that stress proteins of the MAPK class (p38 and JNK) as well as heat shock protein 27 (Hsp27) are activated in response to increasing osmolarity.[113][114] Furthermore, activation of MAPK signaling in skeletal muscle cells is known to induce myocyte differentiation[115] via GSK3β and MEF2 signaling, which can induce muscle cell growth.[116][117]
Several review studies assessing the safety of creatine supplementation tend to make note of increases in formaldehyde and possible carcinogenic results.[451][452] Specifically, creatine is metabolized into an intermediate called methylamine, which can be converted to formaldehyde by the SSAO enzyme.[453] An increase in urinary formaldehyde has been noted in youth given 21g of creatine for one week, during which both methylamine (820% increase) and formaldehyde (350%) were increased, relative to control.[454] However, a more prolonged study using 300mg/kg (loading dose of around 20g) in adults for ten weeks failed to replicate these effects.[455]
Studies of so-called "smart drugs" have also been taken out of context. Some "smart" nutrients, available over the counter, are marketed as a way to "increase mental focus and concentration during training." The problem is that the studies they're based upon involved either animals or people with brain pathology. In normal people the effects of smart drugs remain unproven, except anecdotally.
If you want to take creatine as a supplement for bigger and stronger muscles, then the standard protocol is to have a “loading period” where you significantly increase your creatine intake for a few days or weeks. “This can prime your muscles to increase the amount of creatine that they ‘hold,’” explains Bates. “During the loading period, you generally take 5 g of creatine four times per day. After the loading period, you decrease the amount of creatine you take to a ‘maintenance’ level of 3 to 5 g per day.” (That’s also the recommendation from the International Society of Sports Nutrition.) (5)

For several years, research studies have shown that adolescents concerned with both athletics and appearance are taking performance-enhancing supplements. A study by the American Academy of Pediatrics of middle-school and high-school students ages 10 to 18 years found creatine use in all grades 6 through 12. About 5.6% of the study participants and 44% of high-school senior athletes admitted taking creatine.
Creatine is a hydrophilic polar molecule that consists of a negatively charged carboxyl group and a positively charged functional group [64]. The hydrophilic nature of creatine limits its bioavailability [65]. In an attempt to increase creatines bioavailability creatine has been esterified to reduce the hydrophilicity; this product is known as creatine ethyl ester. Manufacturers of creatine ethyl ester promote their product as being able to by-pass the creatine transporter due to improved sarcolemmal permeability toward creatine [65]. Spillane et al [65] analyzed the effects of a 5 days loading protocol (0.30 g/kg lean mass) followed by a 42 days maintenance phase (0.075 g/kg lean mass) of CM or ethyl ester both combined with a resistance training program in 30 novice males with no previous resistance training experience. The results of this study [65] showed that ethyl ester was not as effective as CM to enhance serum and muscle creatine stores. Furthermore creatine ethyl ester offered no additional benefit for improving body composition, muscle mass, strength, and power. This research did not support the claims of the creatine ethyl ester manufacturers.
Do standard/oblique crunches. Lie down on a mat and position both arms behind your head without locking the hands. Bend your knees so that your feet are flat on the ground. Pushing the small of your back into the ground, slowly roll your shoulders off the ground only a couple of inches (not to a full sitting position). Don't use your momentum to help you up; use slow, regulated movements. Repeat 3 x 20.

While muscle growth is critical for bodybuilding, getting rid of extra fat is a necessity to improve your total physique. These supplements can help to increase your metabolism, forcing your body to burn away more of its fat stores. They can also slow down the digestion process to prevent excess fat and carbohydrates from entering the body and being stored.


Creatine supplementation appears to attenuate decreases in GLUT4 expression seen with immobility and may increase GLUT4 expression during exercise. While it seems capable of increasing GLUT4 during resting conditions, it has failed to reach significance, suggesting that creatine supplementation works best with some stimuli associated with exercise.

A: No. You should ensure that the squat and hinge motor pattern are both emphasized but other variations (front squat, sumo deadlift, safety bar squat, Romanian deadlift) should be included until you can master technique on the more advanced variations. For more information on exercise progressions and regressions see this article: Train Like An Athlete, Look Like a Bodybuilder.
Creatine helps create essential adenosine triphosphate (ATP). This is the energy source of muscle contractions. By upping your levels, you can increase the amount of energy available to your muscles, boosting your performance. Because your muscle strength and size increases when you add weight and reps, improving your performance can be a game changer in terms of increasing your muscle mass. If you’re able to lift longer and harder, your muscles will grow. Creatine is certainly a winner among muscle building supplements.

Weight gain might be the most common side effect. “Creatine can cause your body to hold on to water by pulling fluid into your cells via osmosis,” says Bates. “It doesn't necessarily cause you to gain weight as fat, but it can increase edema, or water weight.” Also, muscle is denser than fat, so in some cases building muscle can increase body weight overall (even if you’re simultaneously burning fat).
Do Belgian squats (or "single leg squats") with a dumbbell. Hold out in front of your chest a dumbbell using both hands. Standing in front of a bench, lift your right leg back so that it's parallel to the floor and resting comfortably on the bench. Bend into a squat using the left leg, so that the right knee almost hits the floor. Lift and repeat 3 x 8. Repeat using opposite leg.
Whenever you hear the word, “bodybuilding”, your mind usually flashes you images of bulging muscles, steel, sweat, the shouts of weightlifters, and ripped, muscular bodies of men and women in skimpy spandex. Your mind instantly takes you to the gym followed by wishful thinking that you can have a sexy body and bigger muscles. However, it takes more than just

Other human studies have yielded mixed results concerning creatine’s influence on triglyceride levels. In healthy male football players, creatine supplementation (5g monohydrate daily) over eight weeks did not influence triglyceride levels[324] but in martial artists given approximately 3.5g daily, a statistically significant increase in triglycerides was found despite no changes in total cholesterol.[325] In people with cardiovascular complications, given an exercise program and creatine, no significant change in triglycerides was noted relative to a placebo control group, which was also exercising.[326]
Bodybuilders also understand how to diet. This is perhaps the most important aspect other athletes can learn from. I can’t think of any athlete that comes close to bodybuilders who know how to build massive amounts of muscle and then can diet with the type of precision that gets them absolutely shredded on a specific date. Most resistance training sports use weight classes to compete. It doesn’t take a rocket scientist to see that shedding body fat without losing muscle can be a major advantage. Competing at a lower weight class because you are leaner while maintaining strength and performance is a very valuable and effective strategy. Diet to build LEAN muscle to keep weight low for a competitive advantage.
As a ingredient that has been tested time and time again and shown to positively affect the building of muscle, GAT has taken the highest-quality compound to create Essentials Creatine. Using HPLC-tested pharmaceutical grade creatine that's tested to be 99.9% pure, Essentials Creatine provides 5 grams in every serving which can increase muscle size, boost strength, and enhance muscle recovery. Keep Reading »
Peirano, R. I., Achterberg, V., Dusing, H. J., Akhiani, M., Koop, U., Jaspers, S., Kruger, A., Schwengler, H., Hamann, T., Wenck, H., Stab, F., Gallinat, S., and Blatt, T. Dermal penetration of creatine from a face-care formulation containing creatine, guarana and glycerol is linked to effective antiwrinkle and antisagging efficacy in male subjects. J.Cosmet.Dermatol. 2011;10(4):273-281. View abstract.
Beach muscles and Olympic lifts draw more attention. But the many little stabilizer muscles around your shoulders, hips, and midsection — collectively the core — provide a strong foundation. Challenging the stability and mobility of these key muscles with medicine balls, physioballs, mini-bands, and rotational movements (lifting, chopping) pays huge dividends.
A dose of 5g daily has strong evidence supporting it not causing any adverse side effects[605] and 10g has been used daily for 310 days in older adults (aged 57+/-11.1) with no significant differences from placebo.[519] Such a dose has also been demonstrated for long-term safety for people with Parkinson’s disease,[606] and at least one small retrospective study in athletes (surverying people taking creatine for up to or over a year) failed to find any significant differences in a battery of serum health parameters.[502] Other studies measuring serum parameters have also failed to find abnormalities outside the normal range.[607]
For several years, research studies have shown that adolescents concerned with both athletics and appearance are taking performance-enhancing supplements. A study by the American Academy of Pediatrics of middle-school and high-school students ages 10 to 18 years found creatine use in all grades 6 through 12. About 5.6% of the study participants and 44% of high-school senior athletes admitted taking creatine.
Before getting into the nitty-gritty details about supplements, it’s important to have a good understanding of how muscle growth works. When you take a muscle growth supplement, the role it plays in helping you reach your goals should be very clear. With the supplements available on the market, you can be sure that while some serve an important purpose, others are gimmicks. It’s easier to identify the money wasters if you know how muscle building works.
Most causes of brain injury (calcium influx, excitotoxicity, lipid peroxidation, reactive oxygen intermediates or ROIs) all tend to ultimately work secondary to damaging the mitochondrial membrane and reducing its potential, which ultimately causes cellular apoptosis.[258][259][260][261] Traumatic brain injuries are thought to work vicariously through ROIs by depleting ATP concentrations.[262][263] Creatine appears to preserve mitochondrial membrane permeability in response to traumatic brain injury (1% of the rat’s diet for four weeks),[264] which is a mechanism commonly attributed to its ATP-buffering ability.
Higher percieved effort during heat (or due to elevations in body heat) are thought to be mediated by either the serotonergic system (suppresses performance)[388] or the dopaminergic system (enhances performance),[389][234] and creatine is thought to be involved in percieved effort during heat training since it has been noted previously to interact with neurotransmission by enhancing both serotonergic[253] and dopaminergic[230] neurotransmission.
It is suggested [16,37] that another mechanism for the effect of creatine could be enhanced muscle glycogen accumulation and GLUT4 expression, when creatine supplementation is combined with a glycogen depleting exercise. Whereas it has been observed [38] that creatine supplementation alone does not enhance muscle glycogen storage. Hickner et al [15] observed positive effects of creatine supplementation for enhancing initial and maintaining a higher level of muscle glycogen during 2 hours of cycling. In general, it is accepted that glycogen depleting exercises, such as high intensity or long duration exercise should combine high carbohydrate diets with creatine supplementation to achieve heightened muscle glycogen stores [39].
The creatine kinase (CK) enzyme in rat heart tissue appears to have a KM around 6mM of creatine as substrate.[280] and is known to positively influence mitochondrial function as higher cytoplasmic phosphocreatine concentrations (not so much creatine per se) increase the oxidative efficiency of mitochondria[280] This is thought to be due to the transfer of high energy phosphate groups.[280]
According to the two meta-analyses on the topic, creatine significantly increases power when supplemented in both sexes over a period of time up to 8 weeks, during which improvement over placebo is maintained, rather than being enhanced further. The rate at which power is derived from a resistance training regimen appears to be up to 78.5% greater with creatine relative to placebo, and in active trained men who are naive to creatine, this can be quantified at about 7kg for the bench press and 10kg for the squat over 8 weeks.
I get lost every time I walk into my neighborhood GNC… the people who work there know their stuff, but nobody knows my body better than me and that’s where it all falls apart, but I’m working on that. I agree, I rather have grass-fed and more natural options as opposed to anything containing GMO in the products… The point is to become healthier, not go the other way…. But I also don’t want to get too much soy in my diet either… My wife is doesn’t want it for me and it’s given me headaches too, so I’m not really one for those. I guess small amounts of soy should be okay, right? Could someone be allergic to soy? There’s tons of other options though and I’m going to have to really look more into these here coz it has everything I’ve been looking for! Thanks for putting this together!

A meta-analysis of 16 studies conducted on creatine and its influence on power and strength,[368][369] (with or without exercise in all age groups above 16, but placebo controlled and without crossover[368]) compiled studies utilizing a 5-7 day loading period with continued maintenance thereafter and studies assessing 1-3 rep bench press strength in trained young men. Seven studies (four of which are online[370][371][372][373]) totaling 70 people using creatine and 73 people in placebo showed a 6.85kg increase in strength relative to placebo, the benefits of which peaked at 8 weeks.[368] This meta-analysis also quantified a significant increase in squat strength (9.76kg) yet failed to find a significant influence on peak bicep contraction power, which may have been influenced by the two null studies[374][375] being in elderly people while the positive study[376] was statistically outweighed, but noted an 1.8-fold increase in power associated with creatine over placebo. The other meta-analysis conducted the following year[369] calculated effect sizes for creatine supplementation and noted no significant differences between genders or when comparing trained and untrained individuals. The mean effect size of exercises lasting below 30s (those that use the creatine-phosphate system) was 0.24+/-0.02 and performed significantly better than placebo, where exercise increased performance by 4.2+/-0.6% while the addition of creatine enhanced this effect to 7.5+/-0.7%.[369]
Creatine supplementation may also be of benefit to injured athletes. Op’t Eijnde et al [39] noted that the expected decline in GLUT4 content after being observed during a immobilization period can be offset by a common loading creatine (20g/d) supplementation protocol. In addition, combining CM 15g/d for 3 weeks following 5 g/d for the following 7 weeks positively enhances GLUT4 content, glycogen, and total muscle creatine storage [39].
Kornblum, C., Schroder, R., Muller, K., Vorgerd, M., Eggers, J., Bogdanow, M., Papassotiropoulos, A., Fabian, K., Klockgether, T., and Zange, J. Creatine has no beneficial effect on skeletal muscle energy metabolism in patients with single mitochondrial DNA deletions: a placebo-controlled, double-blind 31P-MRS crossover study. Eur J Neurol 2005;12(4):300-309. View abstract.
Product reviews – Since the effectiveness of products varies based on a wide number of factors, one of the best things to do is read creatine product reviews. The best rated creatine products will have consistently good reviews, meaning a lot of people use that product and would recommend it. However – remember to take reviews with a grain of salt, as there’s a lot of ignorance and misinformation out there.
Synthesis primarily takes place in the kidney and liver, with creatine then being transported to the muscles via the blood. The majority of the human body's total creatine and phosphocreatine stores is located in skeletal muscle, while the remainder is distributed in the blood, brain, and other tissues.[17][18][20] Typically, creatine is produced endogenously at an estimated rate of about 8.3 mmol or 1 gram per day in young adults.[16][17] Creatine is also obtained through the diet at a rate of about 1 gram per day from an omnivorous diet.[17][18] Some small studies suggest that total muscle creatine is significantly lower in vegetarians than non-vegetarians, as expected since foods of animal origin are the primary source of creatine. However, subjects happened to show the same levels after using supplements.[21]
×