Creatine is a natural source of energy for muscle contraction. The body produces creatine in the liver, kidneys, and pancreas. People can also get creatine by eating meat or fish. (Vegetarians may have lower amounts of creatine in their bodies.) Most of the creatine in the body is stored in skeletal muscle and used during physical activity. The rest is used in the heart, brain, and other tissues.
The first open label trial on ALS failed to significantly alter lung function as assessed by FEV (when comparing the rate of decline pretreatment relative to treatment).[545] Creatine has elsewhere failed to benefit lung function at 5g daily for months relative to control[546] and failed to significantly attenuate the rate of lung function deterioration over 16 months at 10g daily[505] and 5g daily over nine months.[507]
The general strategy adopted by most present-day competitive bodybuilders is to make muscle gains for most of the year (known as the "off-season") and, approximately 12–14 weeks from competition, lose a maximum of body fat (referred to as "cutting") while preserving as much muscular mass as possible. The bulking phase entails remaining in a net positive energy balance (calorie surplus). The amount of a surplus in which a person remains is based on the person's goals, as a bigger surplus and longer bulking phase will create more fat tissue. The surplus of calories relative to one's energy balance will ensure that muscles remain in a state of anabolism.
Beta-alanine is a naturally occurring non-essential amino acid that comes into the body through foods that are rich in protein. The performance-enhancing aspect of beta-alanine (BA) is due to its ability to increase intra-muscular levels of carnosine. Increasing beta-alanine through supplementation may raise carnosine levels by over 60 percent in as quickly as four weeks.[6]
Recommended dose: The fastest way to increase muscle creatine stores is to follow the loading method of 20 grams per day for 5-7 days, followed by the standard maintenance dose of 5 grams per day. However, a lower dose of 5 grams for 28 days will also increase creatine stores without causing the 2-4 pound weight gain typically seen with a loading protocol.
JAK2 (Janus-Activating Kinase 2) is a novel protein that has been shown to suppress the activity of the creatine transporter CrT in vitro. The effects of JAK2 on CrT are not well-understood in vivo, however. Given that growth hormone activates both c-src (increases CrT activity) and JAK2- which has been found to decrease CrT activity, it is plausible that JAK2 may function as a negative-feedback regulator of creatine uptake. Future research is needed to better understand the role of JAK2 on CrT activity in vivo.
This suppression of creatine synthesis is thought to actually be beneficial, since creatine synthesis requires s-adenosyl methionine as a cofactor and may use up to 40-50% of SAMe for methylation[35][36][122] (initially thought to be above 70%, but this has since been re-evaluated[122]) though the expected preservation of SAMe may not occur with supplementation.[487] Reduced creatine synthesis, via preserving methyl groups and trimethylglycine (which would normally be used up to synthesize SAMe), is also thought to suppress homocysteine levels in serum,[37] but this may also not occur to a practical level following supplementation.[487]
In regard to liver fat buildup (steatosis), which is normally associated with reduced availability of S-adenosyl methionine[495][496] and a suppression in expression of genes involved in fatty acid oxidation (PPARα and CPT1), creatine supplementation at 1% of the rat diet alongside a diet that induces fatty liver is able to fully prevent (and nonsignificantly reduce relative to the control given standard diets) the aforementioned changes and the state of steatosis, as well as changes in serum biomarkers (glucose and insulin) that accompany steatosis.[125] 
In the early 2000s, the IFBB was attempting to make bodybuilding an Olympic sport. It obtained full IOC membership in 2000 and was attempting to get approved as a demonstration event at the Olympics, which would hopefully lead to it being added as a full contest. This did not happen and Olympic recognition for bodybuilding remains controversial since many argue that bodybuilding is not a sport.[11]
Safety. Excess quantities of antioxidants may produce a ‘pro-oxidant’ effect, which is the opposite of what you would take these supplements for. The Australian Institute of Sport recommends that antioxidant vitamin supplements only be taken for a period of a few weeks while the body adjusts to stressful circumstances. Excess vitamin C may promote excess iron absorption, which may not be healthy for everyone.
Some people do have allergies to soy, or they have an intolerance to soy. If you notice certain symptoms (like a headache) after soy consumption, you may have an intolerance. Discovering your food intolerances/allergies would also be handled by a Dietitian. For the general population who are not allergic/intolerant to soy, however, soy-based products can be a part of a healthy diet. New research has shown that soy is not harmful as people fear. If soy gives you issues, you could always opt for whey protein, pea protein or other forms of vegetable protein. Have you seen our article on protein powders? Click here.

According to the abstract, in the stratified analyses by forms of aerobic exercise, weekly resistance exercise of 1 time or 1-59 minutes was associated with lower risks of total cardiovascular events and cardiovascular disease, regardless of meeting the aerobic exercise guidelines. The analysis showed that resistance training reduced the risk of cardiovascular events in 2 ways: training had a direct association with cardiovascular risk, and resistance training indirectly lowered cardiovascular risk by decreasing body mass index.

These protective effects are similar to those seen with trimethylglycine, since they both cause an increase in liver concentrations of phosphatidylcholine (PC, causing an increase in vLDL production and efflux of triglycerides from the liver).[497] Both TMG and creatine are thought to work indirectly by preserving SAMe concentrations,[125][498] since PC synthesis requires SAMe as well (via PEMT[499]) and genes involved in fatty acid metabolism in the liver that were not affected by the diet (VLCAD and CD36) were unaffected by creatine.[125]


Similarly to complex training, contrast loading relies upon the enhanced activation of the nervous system and increased muscle fibre recruitment from the heavy set, to allow the lighter set to be performed more powerfully.[41] Such a physiological effect is commonly referred to as post-activation potentiation, or the PAP effect. Contrast loading can effectively demonstrate the PAP effect: if a light weight is lifted, and then a heavy weight is lifted, and then the same light weight is lifted again, then the light weight will feel lighter the second time it has been lifted. This is due to the enhanced PAP effect which occurs as a result of the heavy lift being utilised in the subsequent lighter lift; thus making the weight feel lighter and allowing the lift to be performed more powerfully.
The creatine transporter is a sodium[139][140] and chloride[141][142] dependent membrane-associated transporter that belongs to the Na+/Cl-dependent family of neurotransmitter transporters.[143] In muscle cells and most other cell types,[131][141] the isomer of the creatine transporter is known as SLC6A8 (solute carrier family 6, member 8). SLC6A8 is encoded by the gene present on the Xq28 region of the human X-chromosome and is expressed in most tissues.[144] A related gene encoding a creatine transporter variant has also been identified at 16p11.1 that is expressed exclusively in the testes.[145] These two transporters share 98% homology.[144][145]
2-[carbamimidoyl(methyl)amino]acetic acid, Cr, Creatin, Creatina, Créatine, Créatine Anhydre, Creatine Anhydrous, Creatine Citrate, Créatine Citrate, Creatine Ethyl Ester, Créatine Ethyl Ester, Creatine Ethyl Ester HCl, Créatine Ethyl Ester HCl, Creatine Gluconate, Creatine Hydrochloride, Créatine Kré Alkaline, Creatine Malate, Créatine Malate, Creatine Monohydrate, Créatine Monohydrate, Créatine Monohydratée, Creatine Pyroglutamate, Créatine Pyroglutamate, Creatine Pyruvate, Créatine Pyruvate, Dicreatine Malate, Dicréatine Malate, Di-Creatine Malate, Éthyle Ester de Créatine, Glycine, Kreatin, Kre-Alkalyn Pyruvate, Malate de Tricréatine, N-(aminoiminométhyl)-N-Méthyl, N-(aminoiminomethyl)-N methyl glycine, N-amidinosarcosine, Phosphocreatine, Phosphocréatine, Tricreatine HCA, Tricréatine HCA, Tricreatine Malate, Tricréatine Malate.

×