This claim has not been demonstrated at this time, and a recent comparative study of buffered creatine against basic creatine monohydrate found no significant differences between the two in 36 resistance trained individuals, in regard to the effects or the accumulation of creatine in muscle tissue.[71] There also were no significant differences in the amount of adverse side-effects reported.
We can all pile on the pounds, just stay in the fast food lane, but it’s a nutrient-dense healthy diet, that will promote lean muscle development and size. In truth, muscular growth and building that brick house frame, can be harder to achieve than losing weight, and very frustrating. But we are here to help - follow our top 8 tips and you'll pack on lean muscle and size far more easily and be well on your way to achieving that physique you want.
The shortest and most preliminary study noted that, over the short term, creatine delivers on its expected improvement in physical strength. However, longer studies that measure the rate of loss for muscle function (deterioration of muscular capacity that is known to occur with ALS) have repeatedly failed to find a benefit with creatine supplementation.
Creatine is old school and definitely hit a pop culture zenith, but that doesn’t make it out-dated or irrelevant today. Creatine supplementation gets results. For starters, one study from Medicine and Science in Sports and Exercise confirms that creatine supplementation can enhance physical performance, claiming that it “exhibits small but significant physiological and performance changes.”
If you have been training properly for at least three years, you’ll find that advanced pump-enhancing techniques like rest-pause sets, drop sets, and some of the other old-school bodybuilding techniques you’ve no doubt heard of can be effective when used sparingly. Just be sure not to overdo the use of them. And never get away from the most important rule: setting PR’s to get stronger.
Those micro-tears that are such a key factor for muscle-building need rest to rebuild themselves and grow stronger. When do they do that? When you’re asleep! “You have to rest and feed your muscles between workouts or you will tear them down and they will become weaker,” says Olson. “Over time, you run the risk of over-training, which can result in injury, and possibly even more sleep troubles.”
The majority of studies focusing on creatine supplementation report an increase in the body’s’ creatine pool [15-17]. There is a positive relationship between muscle creatine uptake and exercise performance [17]. Volek et al [18] observed a significant increase in strength performance after 12 weeks creatine supplementation with a concurrent periodized heavy resistance training protocol. The creatine supplementation protocol consisted of a weeklong loading period of 25 g/d followed by a 5 g maintenance dose for the remainder of the training. These positive effects were attributed to an increased total creatine pool resulting in more rapid adenosine triphosphate (ATP) regeneration between resistance training sets allowing athletes to maintain a higher training intensity and improve the quality of the workouts along the entire training period.
Studies measuring extracellular water versus intracellular water note similar increases in both, associated with creatine. Creatine does not tend to disturb the ratios of water to dry mass in various tissues measured.[609] At least one study in older men (48-72 years) has failed to find a significant difference in both intracellular and extracellular water concentration after 14 weeks of 5g creatine daily (with gatorade) relative to gatorade in isolation, with the ratio being maintained.[615]
Researchers found that 5g of creatine four times daily for a week (loading) before sleep deprivation for 12-36 hours was able to preserve cognition during complex tasks of executive function at 36 hours only, without significant influence on immediate recall or mood.[279] A similar protocol replicated the failure to improve memory and attention, but noted less reports of fatigue (24 hours) and less decline of vigor (24 hours) although other mood parameters were not measured.[276]

In regard to the blood brain barrier (BBB), which is a tightly woven mesh of non-fenestrated microcapillary endothelial cells (MCECs) that prevents passive diffusion of many water-soluble or large compounds into the brain, creatine can be taken into the brain via the SLC6A8 transporter.[192] In contrast, the creatine precursor (guanidinoacetate, or GAA) only appears to enter this transporter during creatine deficiency.[192] More creatine is taken up than effluxed, and more GAA is effluxed rather than taken up, suggesting that creatine utilization in the brain from blood-borne sources[192] is the major source of neural creatine.[193][192] However, “capable of passage” differs from “unregulated passage” and creatine appears to have tightly regulated entry into the brain in vivo[193]. After injecting rats with a large dose of creatine, creatine levels increased and plateaued at 70uM above baseline levels. These baseline levels are about 10mM, so this equates to an 0.7% increase when superloaded.[193] These kinetics may be a reason for the relative lack of neural effects of creatine supplementation in creatine sufficient populations.