If you are somebody that is tired of not getting results, wants to avoid trial-and-error, or you just want to be told exactly what to do to reach your goals, check out our popular 1-on-1 coaching program. You’ll work with our certified NF instructors who will get to know you better than you know yourself and program your workouts and nutrition strategy for you.
In otherwise healthy adults subject to leg immobilization for two weeks while taking 20g creatine daily during immobilization and then 5g daily during eight weeks of rehabilitation, it was noted that the creatine group failed to reduce atrophy during the immobilization (10% reduction in cross sectional area and 22-25% reduction in force output) despite preventing a decrease in phosphocreatine, yet experienced a significantly enhanced rate of regrowth and power recovery.[358] A similarly structured and dosed study has also noted greater expression of skeletal muscle, GLUT4 expression, and a 12% increase in muscle phosphocreatine content.[330]
This ingredient also plays a major role in cell growth, recovery, and communication. Increasing the amount of creatine stored in your muscles can speed up the growth of new muscle and help prevent current muscles from being degraded during exercise. By reducing muscle breakdown, creatine can speed up the healing and recovery processes, as there will be less damage to repair.
The maximum amount of creatine the body can store is about 0.3 gram per kilogram of body weight [6]. The creatine content of skeletal (voluntary) muscles averages 125 millimoles per kilogram of dry matter (mmol/kg/dm) and ranges from about 60 to 160 mmol/kg/dm. Approximately 60% of muscle creatine is in the form of PCr. Human muscle seems to have an upper limit of creatine storage of 150 to 160 mmol/kg/dm. Athletes with high creatine stores don't appear to benefit from supplementation, whereas individuals with the lowest levels, such as vegetarians, have the most pronounced increases following supplementation. Without supplementation, the body can replenish muscle creatine at the rate of about 2 g/day [7].
Bodybuilders also train small muscles with a similar volume, frequency and intensity of their larger muscles. Strength athletes laugh at this. “Curls are a waste of time” is a common phrase you will hear hurled at a bodybuilder. This is SILLY. Although big compound movements should be most people’s resistance training priority, smaller muscle group focus work has some benefits for every athlete. Bicep tears are quite common among strength athletes, especially strong men and powerlifters. This happens because these competitors will lift tremendous weights with their backs, but their biceps are the weak link. Many of these injuries could be prevented with some good old-fashioned bodybuilder type isolation work. If you are only as strong as your weak link, doesn’t it make sense to make those weak links strong ones?

Due to this relative deficiency-state in vegetarians and vegans, some aspects of creatine supplementation are seen as more akin to normalizing a deficiency, rather than providing the benefits of supplementation. In young vegetarians, but not omnivores, creatine supplementation can enhance cognition.[60][61] The increased gain in lean mass may be more significant in vegetarians, relative to omnivores.[59] Supplementation of creatine in vegetarians appears to normalize the gap in storage between vegetarians and omnivores.[62] This is possibly related to a correlation seen in survey research, where vegetarianism and veganism appear to be more commonly affected by some mental disorders like anxiety and depression.[63]
Endogenous serum or plasma creatine concentrations in healthy adults are normally in a range of 2–12 mg/L. A single 5 g (5000 mg) oral dose in healthy adults results in a peak plasma creatine level of approximately 120 mg/L at 1–2 hours post-ingestion. Creatine has a fairly short elimination half-life, averaging just less than 3 hours, so to maintain an elevated plasma level it would be necessary to take small oral doses every 3–6 hours throughout the day. After the "loading dose" period (1–2 weeks, 12–24 g a day), it is no longer necessary to maintain a consistently high serum level of creatine. As with most supplements, each person has their own genetic "preset" amount of creatine they can hold. The rest is eliminated as waste. A typical post-loading dose is 2–5 g daily.[52][53][54]
Liquid creatine has been shown to be less effective than creatine monohydrate.[69] This reduced effect is due to the passive breakdown of creatine over a period of days into creatinine, which occurs when it is suspended in solution.[70] This breakdown is not an issue for at-home use when creatine is added to shakes, but it is a concern from a manufacturing perspective in regard to shelf-life before use.
If you're a beginner, just about any workout will be intense enough to increase protein synthesis. But if you've been lifting for a while, you'll build the most muscle quickest if you focus on the large muscle groups, like the chest, back, and legs. Add compound lifts like squats, deadlifts, pullups, bent-over rows, bench presses, dips, and military presses to your workout to work them the most efficiently.
Who Makes It: This product is made by Cellucor, a sports and fitness supplement firm best-known for their C4 line of pre-workout supplements. While C4 is their best seller (and a top seller overall), Cellucor also manufactures a wide range of high-quality supplements for a variety of uses. They have been in business for over 15 years and are a trusted name in the fitness community.

Although some have voiced concerns about kidney damage with creatine supplementation, it’s generally regarded as a safe supplement when taken responsibly. The Mayo Clinic advises against taking it if you have an allergy. When used properly, the incidence of potential side effects such as low blood sugar and dehydration, are minor in healthy people taking a safe dosage.
That means it takes time for supplements aimed at joint treatment to work. So plan not to feel anything for about two months after you start using glucosamine. After that, pain control with the supplement is comparable to what happens with drug use, according to various studies. The typical doses are 1,200 milligrams daily of glucosamine and 800 of chondroitin, which can be doubled initially.
Creatine has been noted to increase the amplitude (0.5-5mM) and frequency (25mM only) of NMDA receptors, although concentrations of 0.5-25mM also reduced signaling intensity. This was credited to creatine causing an increase in ligand binding of glutamate with an EC50 of 67µM and maximal activity at 1mM creatine (158±16% of baseline).[214] Creatine appears to modulate the polyamine binding site of the NMDA receptor, as it is abolished by arcaine and potentiated by spermidine.[215] This binding site is known to modify NMDA receptor affinity.[216][217]
Studies with animal and cellular models demonstrated positive effect of creatine ingestion on neurodegenerative diseases. These effects have been attributed to improved overall cellular bioenergetics due to an expansion of the phosphocreatine pool [50]. Creatine deficiency syndromes, due to deficiency of glycine amidinotransferase and guanidinoacetate methyltransferase, can cause decreases or complete absence of creatine in the central nervous system. Syndromes of this nature have the possibility to be improved by supplementing orally with creatine. Brain creatine deficiency resulting from ineffective crea T1 has been shown not to be effectively treated with oral creatine supplementation [51]. Additionally, oral creatine administration in patients with myopathies has shown conflicting results depending on the type of myopathy and creatine transport systems disorders [4].
Synthesis primarily takes place in the kidney and liver, with creatine then being transported to the muscles via the blood. The majority of the human body's total creatine and phosphocreatine stores is located in skeletal muscle, while the remainder is distributed in the blood, brain, and other tissues.[17][18][20] Typically, creatine is produced endogenously at an estimated rate of about 8.3 mmol or 1 gram per day in young adults.[16][17] Creatine is also obtained through the diet at a rate of about 1 gram per day from an omnivorous diet.[17][18] Some small studies suggest that total muscle creatine is significantly lower in vegetarians than non-vegetarians, as expected since foods of animal origin are the primary source of creatine. However, subjects happened to show the same levels after using supplements.[21]