Creatine is produced endogenously at an amount of about 1 g/d. Synthesis predominately occurs in the liver, kidneys, and to a lesser extent in the pancreas. The remainder of the creatine available to the body is obtained through the diet at about 1 g/d for an omnivorous diet. 95% of the bodies creatine stores are found in the skeletal muscle and the remaining 5% is distributed in the brain, liver, kidney, and testes [1]. As creatine is predominately present in the diet from meats, vegetarians have lower resting creatine concentrations [2].
In 1912, Harvard University researchers Otto Folin and Willey Glover Denis found evidence that ingesting creatine can dramatically boost the creatine content of the muscle.[5][non-primary source needed] In the late 1920s, after finding that the intramuscular stores of creatine can be increased by ingesting creatine in larger than normal amounts, scientists discovered creatine phosphate, and determined that creatine is a key player in the metabolism of skeletal muscle. The substance creatine is naturally formed in vertebrates.[6]
The failure of creatine to improve physical performance in these conditions is thought to be related to the myopathies in general, which are known to result in less phosphocreatine in skeletal muscle,[568] associated with reduced expression of the creatine transporter.[569] As creatine has once been noted to not accumulate in the skeletal muscle of people with DM1 given supplementation,[566] it is thought that the subjects did not respond to therapy.

I was building up, bulking, going after the mass, which to me meant 230 pounds of sheer body weight. At that time, I didn’t care about my waist or anything else that would give me a symmetrical look. I just wanted to build a gigantic 250-pound body by handling a lot of weight and blasting my muscles. My mind was into looking huge, into being awesome and powerful. I saw it working. My muscles began bursting out all over. And I knew I was on my way.”
In the last week leading up to a contest, bodybuilders usually decrease their consumption of water, sodium, and carbohydrates, the former two to alter how water is retained by the body and the latter to reduce glycogen in the muscle. The day before the show, water is removed from the diet, and diuretics may be introduced, while carbohydrate loading is undertaken to increase the size of the muscles through replenishment of their glycogen. The goal is to maximize leanness and increase the visibility of veins, or "vascularity". The muscular definition and vascularity are further enhanced immediately before appearing on stage by darkening the skin through tanning products and applying oils to the skin to increase shine. Some competitors will eat sugar-rich foods to increase the visibility of their veins. A final step, called "pumping", consists in performing exercises with light weights or other kinds of low resistance (for instance two athletes can "pump" each other by holding a towel and pulling in turn), just before the contest, to fill the muscles with blood and further increase their size and density.
After all, if you’re doing more reps in a set, the weight would obviously be lighter and the intensity level lower. If you’re doing fewer reps in a set, the weight is obviously heavier and the intensity is higher. In addition, how close you come to reaching failure – aka the point in a set when you are unable to complete a rep – also plays a role here.
One pilot study using 150mg/kg creatine monohydrate for a five day loading phase followed by maintenance (60mg/kg) for the remainder of the five weeks noted that supplementation was associated with fewer muscle symptoms and complaints alongside improved muscular function,[572] yet a later trial trying to replicate the obsevations using 150mg/kg daily for five weeks noted the opposite, that creatine supplementation exacerbated symptoms.[573] 
Although creatine is a natural component of food, the amount of food required to supersaturate the muscle with PCr may not be feasible. For example, it could require 22 pounds of meat daily [8]. If creatine monohydrate is proven to be a safe and effective ergogenic aid, creatine supplementation may be the simplest way to increasing muscle stores. It may be beneficial to avoid caffeine if taking creatine supplements. One study showed that caffeine diminished strength gains seen with creatine use [9].
You've figured out the exercises you should be doing, but what about the number of sets and repetitions? Your decision should be based on your goals. The American College of Sports Medicine recommends 8-12 reps for muscular strength and 10-15 reps for muscular endurance. They also recommend at least 1 set of each exercise to fatigue although you'll find that most people perform about 2-3 sets of each exercise. In general:
Studies have deemed staying in the range of 3 to 5 g per day range for maintenance to be safe, and while higher levels have been tested under acute conditions without adverse effects, there isn’t sufficient evidence to determine long-term safety. (8) If you’re interested in upping your creatine consumption, you should work with your doctor or dietitian to make sure it's right for your goals and health history.
Extracellular creatine (creatine outside of a cell) appears to influence creatine uptake into a cell. It seems that prolonged and excessive levels of creatine actually suppress uptake (a form of negative regulation to prevent excessive influx).[180] In vitro studies in rat muscle cells have shown that including 1mM creatine into cell culture medium substantially reduces creatine uptake into cells. The inhibitory effect was partially negated by protein synthesis inhibitors, suggesting that high levels of creatine induce the expression of a protein that suppresses creatine transporter activity.[180] Similar findings were reported in a later study in cultured mouse myoblasts, which noted a 2.4-fold increase in intracellular creatine levels in the presence of the protein synthesis inhibitor cyclohexamide.[174]
However, protein isn’t everything. Contrary to popular belief, carbohydrates and calories from fats are also important. To gain muscle, people who are slender or scrawny need to create a calorie surplus in order to bulk up. That means you need proteins and plenty of healthy carbs, vegetables and even some fats (think healthy fats like nuts, avocado, olive oil, etc.). Carbohydrates play a key role in building muscle. This macronutrient has gotten a bad rap for making people fat. However, if you work out properly, eating plenty of carbs is in your best interest. After training, it’s ideal to ingest some carbs in combination with protein to help replenish your muscles’ glycogen stores.
A great analogy that I like is that the balance between training and recovery is like digging a hole. Each time you lift, you dig yourself deeper and make it harder to climb out of the hole. To get back out again, you have to fill in the hole to return to ground level, and the only way to fill it is with food and rest. If you overdo it in the gym by pushing too hard, you won’t be able to train as often or at a high capacity. Eventually, you’ll get injured.
Because the distribution of muscle strength is unique to each there is no short answer to this question. A personal trainer simply cannot tell all his/her customers to perform a bench press using 100 pounds because it will be too difficult for some and too easy for others. Rather the idea here is to use the right amount of weight that will make you successful in accomplishing the objective set previously (muscle power, strength or endurance).
Ladies!  The images of “bulky” women that you are conjuring up are from bodybuilding magazines. This is one of the biggest myth surrounding strength training. When I started strength training, I didn’t get bulky, I got lean, And I’m no outlier, I’m just one example of the rule: Women who strength train get strong and lean, not bulky.  Like Veronica, who got damn strong and certainly lean.

2-[carbamimidoyl(methyl)amino]acetic acid, Cr, Creatin, Creatina, Créatine, Créatine Anhydre, Creatine Anhydrous, Creatine Citrate, Créatine Citrate, Creatine Ethyl Ester, Créatine Ethyl Ester, Creatine Ethyl Ester HCl, Créatine Ethyl Ester HCl, Creatine Gluconate, Creatine Hydrochloride, Créatine Kré Alkaline, Creatine Malate, Créatine Malate, Creatine Monohydrate, Créatine Monohydrate, Créatine Monohydratée, Creatine Pyroglutamate, Créatine Pyroglutamate, Creatine Pyruvate, Créatine Pyruvate, Dicreatine Malate, Dicréatine Malate, Di-Creatine Malate, Éthyle Ester de Créatine, Glycine, Kreatin, Kre-Alkalyn Pyruvate, Malate de Tricréatine, N-(aminoiminométhyl)-N-Méthyl, N-(aminoiminomethyl)-N methyl glycine, N-amidinosarcosine, Phosphocreatine, Phosphocréatine, Tricreatine HCA, Tricréatine HCA, Tricreatine Malate, Tricréatine Malate.


One study demonstrated that daily supplementation with 5 g of creatine monohydrate increased the intracellular creatine and PCr content of quadriceps muscle in 17 human subjects. Those with the lowest initial total creatine content had the greatest increase. In addition, exercise enhanced creatine uptake in muscle. No adverse effects were reported [5].
Creatine has been noted to increase the amplitude (0.5-5mM) and frequency (25mM only) of NMDA receptors, although concentrations of 0.5-25mM also reduced signaling intensity. This was credited to creatine causing an increase in ligand binding of glutamate with an EC50 of 67µM and maximal activity at 1mM creatine (158±16% of baseline).[214] Creatine appears to modulate the polyamine binding site of the NMDA receptor, as it is abolished by arcaine and potentiated by spermidine.[215] This binding site is known to modify NMDA receptor affinity.[216][217]
THIS TOOL DOES NOT PROVIDE MEDICAL ADVICE. It is intended for general informational purposes only and does not address individual circumstances. It is not a substitute for professional medical advice, diagnosis or treatment and should not be relied on to make decisions about your health. Never ignore professional medical advice in seeking treatment because of something you have read on the WebMD Site. If you think you may have a medical emergency, immediately call your doctor or dial 911.
This claim has not been demonstrated at this time, and a recent comparative study of buffered creatine against basic creatine monohydrate found no significant differences between the two in 36 resistance trained individuals, in regard to the effects or the accumulation of creatine in muscle tissue.[71] There also were no significant differences in the amount of adverse side-effects reported.
How much of a difference does EPOC make? Well, in one research study of young women, basal metabolic rate spiked by 4.2 percent 16 hours following a strength-training session that lasted an hour and 40 minutes—the equivalent of burning an extra 60 calories, on average. That’s a long workout, and 60 extra calories isn’t exactly huge. Plus, EPOC is not a permanent boost. Research suggests it may last anywhere from 12 hours to a few days, depending on the workout and who is doing it. The calories you burn through EPOC can add up over time, especially if you’re lifting weights three or four times a week, but all in all, it doesn’t have a very big effect on your metabolism.

No. It’s not easy for everyone to get the recommended amount of protein in their diets through good eating habits alone. Others may not have clinically low testosterone, but still benefit from boosting their levels to improve their muscle building capacity. You can fix these common problems through muscle building supplements. These easy to take pills and powders can also help you boost your performance at the gym which will, in turn, spur your body’s muscle building and recovery response.
×