Another supplement that’s ideal to take pre-workout is protein. Depending on your goals and your workout time, taking protein before your workout can help you keep your energy levels elevated while working out. Make sure you give yourself at least an hour between the time you take your protein and your workout time so that your body has time to digest.
Gains will differ from one individual to another depending on body size and level of experience in the gym. To make sure you'’re gaining muscle, not fat, don'’t just consider your scale weight. Instead, rely on what you see in the mirror and use a tape measure twice a month to keep track of your waist and hips (you don't want to gain there)— as well as your biceps, chest and quads. Also, don'’t think that you have to gain a set amount of weight each and every week. "Your mass gain doesn'’t have to be uniform,"” Aceto explains. That means you can gain 1/2 pound one week and 1 1/2 the next, perhaps none the third week and still remain on course. "“Expecting uniform gains ignores the intricate makeup of the body and the way it gains mass -— or loses fat - which is by no means in linear fashion," adds Aceto.
Retinol (Vitamin A) B vitamins: Thiamine (B1) Riboflavin (B2) Niacin (B3) Pantothenic acid (B5) Pyridoxine (B6) Biotin (B7) Folic acid (B9) Cyanocobalamin (B12) Ascorbic acid (Vitamin C) Ergocalciferol and Cholecalciferol (Vitamin D) Tocopherol (Vitamin E) Naphthoquinone (Vitamin K) Calcium Choline Chromium Cobalt Copper Fluorine Iodine Iron Magnesium Manganese Molybdenum Phosphorus Potassium Selenium Sodium Sulfur Zinc
A proper warm-up is an important part of an effective strength workout. Start by foam rolling your muscles to wake 'em up. "Foam rolling loosens up tight muscles so that they work the way they're designed to," says Davis. A dynamic warm-up is another important part of your pre-workout routine, it preps your muscles for the work they're about to do and helps increase your range of motion. Increasing your range of motion allows you to go deeper into those squats and fully extend those bicep curls, which means more muscle recruitment and better results. "These two combined reduce your risk of injury and allow you to push harder during your workout," says Davis. Get started with this five-minute warm-up.
Back in the 1970s, scientists discovered that taking creatine in supplement form might enhance physical performance. In the 1990s, athletes started to catch on, and creatine became a popular sports supplement. The supplement is particularly popular among high school, college, and professional athletes, especially football and hockey players, wrestlers, and gymnasts. 
What you eat plays a big role in how much muscle your body can build. Proteins are especially important for building muscle. When you eat protein, your body breaks it down into amino acids which are the building blocks of muscle. How much protein you should include in your diet depends on a number of factors including your age and muscle building goals. Older adults who engage in resistance training and those hoping for maximum muscle growth should eat 1 to 1.3 grams of protein per kg of body weight (2, 3). If you weigh 150 lbs, that means you should take between 68 and 88 g of protein daily. Other recommendations are more modest, suggesting that .36 grams of protein per pound of body weight is enough.
"It'’s especially important to eat a carb- and protein-rich meal immediately after a workout," Aceto says. "Right after training, it turns out that your body is really lousy at taking carbohydrates and sending them down fat-storing pathways,"” he says. "So post-training, carbs will be sent down growth-promoting pathways instead."” And when these carbs are combined with a protein source, you'’ve got a strong muscle-feeding combination because carbohydrates help deliver the amino acids into muscles by boosting insulin levels. This anabolic hormone drives nutrients into the muscle cells and kick-starts the muscle-growth process.
Phosphocreatine is known to be a major source of energy for cardiac tissue alongside fatty acids, which are dominant under periods of normoxia (normal oxygen) while phosphocreatine becomes more important in periods of hypoxic stress.[281][282][283] The entire CK system plays a role in the recovery of the heart following ischemic/hypoxic stress, since blocking CK activity impairs recovery[284][285] and overexpressing CK activity promotes it.[286] This is due to the heart tissue needing high energy phosphate groups at this time, and the ischemic stress reduces CK activity and the ability of CK to donate these groups.[287][288]
Creatine monohydrate is the most common form of creatine, and if not otherwise mentioned is the default form of creatine used in most studies on creatine.[64] It has fairly decent intestinal absorption[65][12] (covered more in depth in the pharmacology section) and is the standard form or “reference” form of creatine, which all other variants are pitted against.

Age-related muscle loss: Many different dosing regimens have been used; however, most use a short-term “loading dose” followed by a long-term maintenance dose. Loading doses are typically 20 grams daily for 4-7 days. Maintenance doses are typically 2-10 grams daily. Older adults seem to only experience benefits from creatine supplementation when it is combined with resistance training.
This increased permeability is noted in glioma cells, where it exerts anti-cancer effects related to cell swelling,[99][100] and in other membranes, such as breast cancer cells[101] and skeletal (contractile) muscle cells.[102] The kinetics of cyclocreatine appear to be first-order,[101] with a relative Vmax of 90, Km of 25mM and a KD of 1.2mM.[103]

If you'’re looking to add muscle mass to your frame, hitting the weights hard is a given. Quality time in the gym begins a cascade of changes that will stimulate your muscles to grow bigger in response to the challenges you throw their way. It'’s tempting to think that'’s all it takes to add muscle to your body. After all, you can actually feel your biceps growing after an intense set of curls.
While muscle growth is critical for bodybuilding, getting rid of extra fat is a necessity to improve your total physique. These supplements can help to increase your metabolism, forcing your body to burn away more of its fat stores. They can also slow down the digestion process to prevent excess fat and carbohydrates from entering the body and being stored.
Less muscle breakdown can also help to reduce post-workout muscle soreness levels. During workouts, the body creates lactic acid as it works to generate extra energy. The buildup of lactic acid can cause muscle fatigue, swelling, and tenderness. Improving the ability of the body to recover can help to more effectively clear out lactic acid, reducing inflammation and soreness.
Creatine is only taken up by its transporter, and changes in the activity level of this transporter are wholly causative of changes in creatine uptake. The transporter is regulated by mostly cytosolic factors as well as some external factors that affect creatine transport activity, [143] including extracellular creatine.[140] Agents affecting creatine transport are further divided into positive regulators (those that increase activity of the transporter) and negative regulators (those that suppress activity).
Of course, cardio is an important part of fitness too, but the benefits of strength training are major. Strength training helps build muscle, and lean muscle is better at burning calories when the body is at rest, which is important whether you're trying to lose weight or maintain it. It also helps strengthens joints and bones, avoid injury, improve your muscular endurance, and will help you give it your all during your other workouts, whether that means setting a new PR if you're a runner or pushing (and pulling) a little harder with your legs during your favorite indoor cycling class.
In a sample of people with colorectal cancer given creatine supplementation for 8 weeks to assess its interactions with chemotherapy, creatine failed to benefit muscle function or quality of life. Benefits were observed in body cell mass and phase angle (indicative of cellular viability), but only in the subsample with less aggressive chemotherapy.[111]
Creatine has been found to increase skeletal muscle glycogen when given to sedentary adults for a loading and maintenance phase for 37 days at 2g (13.5% after five days of loading, but returning to baseline at the end of the trial). Exercise was not enforced in this study.[207] This study also noted that, despite a normalization of glycogen after the trial, total creatine and ATP was still higher than placebo,[207] and a loading protocol appears to have failed elsewhere in increasing glycogen stores in sedentary people subject to an aerobic exercise test before and after the loading phase.[349]

Athletic performance. Creatine seems to help improve rowing performance, jumping height, and soccer performance in athletes. But the effect of creatine on sprinting, cycling, or swimming performance varies. The mixed results may relate to the small sizes of the studies, the differences in creatine doses, and differences in test used to measure performance. Creatine does not seem to improve serving ability in tennis players.
Creatine is a molecule produced in the body. It stores high-energy phosphate groups in the form of phosphocreatine. Phosphocreatine releases energy to aid cellular function during stress. This effect causes strength increases after creatine supplementation, and can also benefit the brain, bones, muscles, and liver. Most of the benefits of creatine are a result of this mechanism.

Based on the limited data on performance and safety, some authors have not identified any conclusions and do not recommend its consumption in regards to creatine supplementation in children and adolescents [52,54]. Conversely, according to the view of the ISSN [5], younger athletes should consider a creatine supplement under certain conditions: puberty is past and he/she is involved in serious competitive training; the athlete is eating a well-balanced caloric adequate diet; he/she as well as the parents approve and understand the truth concerning the effects of creatine supplementation; supplement protocols are supervised by qualified professionals; recommended doses must not be exceeded; quality supplements are administered.


A quantitative, comprehensive scientific summary and view of knowledge up to 2007 on the effects of creatine supplementation in athletes and active people was published in a 100 citation review position paper by the International Society of Sports Nutrition[5]. More recent literature has provided greater insight into the anabolic/performance enhancing mechanisms of creatine supplementation [15,25] suggesting that these effects may be due to satellite cell proliferation, myogenic transcription factors and insulin-like growth factor-1 signalling [16]. Saremi et al [26] reported a change in myogenic transcription factors when creatine supplementation and resistance training are combined in young healthy males. It was found that serum levels of myostatin, a muscle growth inhibitor, were decreased in the creatine group.
Isometric exercise provides a maximum amount of resistance based on the force output of the muscle, or muscles pitted against one another. This maximum force maximally strengthens the muscles over all of the joint angles at which the isometric exercise occurs. By comparison, weight training also strengthens the muscle throughout the range of motion the joint is trained in, but only maximally at one angle, causing a lesser increase in physical strength at other angles from the initial through terminating joint angle as compared with isometric exercise. In addition, the risk of injury from weights used in weight training is greater than with isometric exercise (no weights), and the risk of asymmetric training is also greater than with isometric exercise of identical opposing muscles.
The Branched-Chain Amino Acids, BCAAs for short, are leucine, valine and isoleucine.  Essentially, its a form of protein powder for muscle gain or other uses. These essential amino acids are not made by the body but are found in foods such as meats, dairy products and legumes. In medicine, BCAAs are used for a number of conditions, however, for many uses, further research is necessary to determine whether or not treatment is effective.
Heart Failure is one of the single most common complications that face many people today. When a heart ages, the cells collect a yellow-brown layer which is waste and can lead to heart complications. This process is known as lipofuscin, or “aging pigment” which leads to death opposed to someone who can delay that as far as possible. [3] In mice, a study was performed where two groups of mice who had lipofuscin underwent different experiments, one group received creatine supplementation, and one group did not receive supplementation. What they found was that the mice who supplemented creatine lived 9% longer than the ones who did not receive creatine. 9% translated into human years results in almost 7 years, which could suggest that if you suffer from this deterioration, creatine supplementation could potentially increase your longevity by 7 years. [3]
I HATE that the resistance training community can be so tribal. I have been preaching to bodybuilders for years about the benefits of powerlifting, or Olympic lifting or kettlebells or even Crossfit style conditioning and many have been receptive. Learn from each other and achieve levels of fitness you simply could not have otherwise. Don’t brush off bodybuilding wisdom…it could be the missing factor in your program.
^ Jump up to: a b c d e f g h Momaya A, Fawal M, Estes R (April 2015). "Performance-enhancing substances in sports: a review of the literature". Sports Med. 45 (4): 517–531. doi:10.1007/s40279-015-0308-9. PMID 25663250. Wilson et al. [91] demonstrated that when non-resistance trained males received HMB pre-exercise, the rise of lactate dehydrogenase (LDH) levels reduced, and HMB tended to decrease soreness. Knitter et al. [92] showed a decrease in LDH and creatine phosphokinase (CPK), a byproduct of muscle breakdown, by HMB after a prolonged run. ... The utility of HMB does seem to be affected by timing of intake prior to workouts and dosage [97].
Athletic performance. Creatine seems to help improve rowing performance, jumping height, and soccer performance in athletes. But the effect of creatine on sprinting, cycling, or swimming performance varies. The mixed results may relate to the small sizes of the studies, the differences in creatine doses, and differences in test used to measure performance. Creatine does not seem to improve serving ability in tennis players.
Exercise is highly effective in increasing your lean body mass, which is essentially muscle. In a study published in 2012, progressive resistance training helped men ages 50 to 83 gain an average of 2.4 pounds of lean body mass over an average of 20.5 weeks. Progressive resistance training involves performing weight bearing exercises. In addition, you must slowly increase the challenge of the exercise over time by increasing the weight, reps and/or sets. Studies show that either increasing reps or weight amount will work. So, if you don’t want to lift more weight, you can just do more reps and still build muscle.
According to the abstract, in the stratified analyses by forms of aerobic exercise, weekly resistance exercise of 1 time or 1-59 minutes was associated with lower risks of total cardiovascular events and cardiovascular disease, regardless of meeting the aerobic exercise guidelines. The analysis showed that resistance training reduced the risk of cardiovascular events in 2 ways: training had a direct association with cardiovascular risk, and resistance training indirectly lowered cardiovascular risk by decreasing body mass index.
×