The right amount of workout: It is highly possible that the protein powder you are taking doesn’t work on your body. Supplements should only be taken if you have a rigorous workout schedule or else, it will turn out to be of no value. Most people just purchase a box of supplements without really doing the math, which is very important. Unless you find out the dosage that suits you, the amount of time you should dedicate for the workout and so on, you must not expect daydream the results. 
Consuming sufficient high-quality protein is essential for building muscle. Current recommendations are to consume a minimum of 0.8g of protein for each kg of body weight, however, this is really only applicable to the average sedentary individual. Current evidence shows that to support muscle development, protein intake is the key, therefore the recommended 0.8g per kg should be increased to 1.5-2.0g of protein per kg of body weight. For an 80 kg individual, that would equate to 120-160 grams of protein per day.

Anti-cancer effects have been observed with the creatine analogue cyclocreatine[456][104][457] and have been replicated with creatine itself. These effects tend to be a reduction in which the rate of implanted tumors progresses.[458][459] It is suspected that these observed effects (inhibition of growth or attenuation of the rate of growth) are not due to the bioenergetic effect of creatine, secondary to creatine kinase. These anti-cancer effects do not have a known reliability, as the expression of creatine kinase varies widely based on the type of tumor.[460] However, some studies suggest an inverse relationship between tumor progression in mice and concentrations of creatine in cells, with creatine depletion coinciding with tumor development.[460]

Injections of creatine are known to be neuroprotective against low oxygen levels (hypoxia) even to neonatal rats.[532] This is thought to be associated with the increased collective pool of phosphocreatine and creatine.[236] Since oral ingestion of creatine by the mother increases brain concentrations of creatine by 3.6% in the fetus prior to birth,[531] it is thought to be protective in the fetuses subject to hypoxic (low oxygen) stressors, such as a caesarean section.
It’s perhaps best known for the aesthetic benefits. Creatine increases muscle size relatively quickly and while that’s in part due to an increase in muscle water content — a good thing, since it means we’re better hydrated — it does indeed appear to lead to actual hypertrophy over time. And bigger muscles aren’t just aesthetic: larger muscles can improve work capacity, explosiveness, fat oxidation, injury resilience, and recovery.
For the sake of mental focus, it’s best to keep any carbs you eat low during the day when you’re working and active and get the lion’s share of them at night with dinner. A typical breakfast could include eggs, yogurt, and fruit, or a shake, and lunch could be meat or fish and steamed veggies. For dinner, have meat or fish again, along with sweet potatoes or rice, and vegetables.

Kerksick, C. M., Wilborn, C. D., Campbell, W. I., Harvey, T. M., Marcello, B. M., Roberts, M. D., Parker, A. G., Byars, A. G., Greenwood, L. D., Almada, A. L., Kreider, R. B., and Greenwood, M. The effects of creatine monohydrate supplementation with and without D-pinitol on resistance training adaptations. J.Strength.Cond.Res. 2009;23(9):2673-2682. View abstract.

ZMA: This supplement is a combination of zinc, magnesium and vitamin B-6. Some research shows that this combination can help raise testosterone levels. In the trial, subjects took a daily dose of ZMA (which included 30 mg zinc monomethionine, 450 mg magnesium aspartate and 10.5 mg vitamin B-6) at night during 7 weeks. Other hormones like IGF also increased, while the stress hormone, cortisol was reduced, creating an overall more favorable hormone profile. Not surprisingly, muscle performance also improved. (n) This paper is surrounding in controversy, however, because one of the scientists involved also holds the trademark for ZMA, and the research is company-funded.
The maximum amount of creatine the body can store is about 0.3 gram per kilogram of body weight [6]. The creatine content of skeletal (voluntary) muscles averages 125 millimoles per kilogram of dry matter (mmol/kg/dm) and ranges from about 60 to 160 mmol/kg/dm. Approximately 60% of muscle creatine is in the form of PCr. Human muscle seems to have an upper limit of creatine storage of 150 to 160 mmol/kg/dm. Athletes with high creatine stores don't appear to benefit from supplementation, whereas individuals with the lowest levels, such as vegetarians, have the most pronounced increases following supplementation. Without supplementation, the body can replenish muscle creatine at the rate of about 2 g/day [7].
This copyrighted, evidence-based medicine resource is provided by Natural Medicines Comprehensive Database Consumer Version. Natural Medicines Comprehensive Database disclaims any responsibility related to consequences of using any product. This monograph should not replace advice from a healthcare professional and should not be used for the diagnosis or treatment of any medical condition.
We’ll define the “bigger muscle groups” as being chest, back, quads and hamstrings, and the “smaller muscle groups” as being biceps, triceps and maybe abs. Shoulders are really somewhere in the middle, though I tend to lean more toward the “smaller” guidelines. Calves, while technically small, are another muscle group that is somewhere in the middle, and I can really go either way depending on the needs of the person.
Syrotuik and Bell [57] investigated the physical characteristics of responder and non-responder subjects to creatine supplementation in recreationally resistance trained men with no history of CM usage. The supplement group was asked to ingest a loading dosage of 0.3 g/kg/d for 5 days. The physiological characteristics of responders were classified using Greenhaff et al [58] criterion of >20 mmol/kg dry weight increase in total intramuscular creatine and phosphocreatine and non responders as <10 mmol/kg dry weight increase, a third group labeled quasi responders were also used to classify participants who fell in between the previously mentioned groups (10-20 mmol/kg dry weight). Overall, the supplemented group showed a mean increase in total resting muscle creatine and phosphocreatine of 14.5% (from 111.12 ± 8.87 mmol/kg dry weight to 127.30 ± 9.69 mmol/kg dry weight) whilst the placebo group remained relatively unaffected (from 115.70 ± 14.99 mmol/kg dry weight to 111.74 ± 12.95 mmol/kg dry weight). However when looking at individual cases from the creatine group the results showed a variance in response. From the 11 males in the supplemented group, 3 participants were responders (mean increase of 29.5 mmol/kg dry weight or 27%), 5 quasi responders (mean increase of 14.9 mmol/kg dry weight or 13.6%) and 3 non-responders (mean increase of 5.1 mmol/kg dry weight or 4.8%). Using muscle biopsies of the vastus lateralis, a descending trend for groups and mean percentage fiber type was observed. Responders showed the greatest percentage of type II fibers followed by quasi responders and non-responders. The responder and quasi responder groups had an initial larger cross sectional area for type I, type IIa and type IIx fibers. The responder group also had the greatest mean increase in the cross sectional area of all the muscle fiber types measured (type I, type IIa and type IIx increased 320, 971 and 840 μm2 respectively) and non-responders the least (type I, type IIa and type IIx increased 60, 46 and 78 μm2 respectively). There was evidence of a descending trend for responders to have the highest percentage of type II fibers; furthermore, responders and quasi responders possessed the largest initial cross sectional area of type I, IIa and IIx fibers. Responders were seen to have the lowest initial levels of creatine and phosphocreatine. This has also been observed in a previous study [17] which found that subjects whose creatine levels were around 150 mmol/Kg dry mass did not have any increments in their creatine saturation due to creatine supplementation, neither did they experience any increases of creatine uptake, phosphocreatine resynthesis and performance. This would indicate a limit maximum size of the creatine pool.
^ "Popular sports supplements contain meth-like compound". USA Today. October 25, 2013. Cohen said researchers informed the FDA in May about finding the new chemical compound in Craze. The team found the compound — N,alpha-diethylphenylethylamine — has a structure similar to methamphetamine, a powerful, highly addictive, illegal stimulant drug. They believe the new compound is likely less potent than methamphetamine but greater than ephedrine.

Creatine, through its ability to act as an energy reserve, attenuates neuron death induced by the MPTP toxin that can produce Parkinson’s disease-like effects in research animals,[235] reduces glutamate-induced excitotoxicity,[236] attenuates rotenone-induced toxicity,[120] L-DOPA induced dyskinesia,[237] 3-nitropropinoic acid,[238] and preserves growth rate of neurons during exposure to corticosteroids (like cortisol), which can reduce neuron growth rates.[239] Interestingly, the energetic effect also applies to Alzheimer’s disease, during which creatine phosphate per se attenuates pathogenesis in vitro, yet creatine per se did not.[240]

It is suggested [16,37] that another mechanism for the effect of creatine could be enhanced muscle glycogen accumulation and GLUT4 expression, when creatine supplementation is combined with a glycogen depleting exercise. Whereas it has been observed [38] that creatine supplementation alone does not enhance muscle glycogen storage. Hickner et al [15] observed positive effects of creatine supplementation for enhancing initial and maintaining a higher level of muscle glycogen during 2 hours of cycling. In general, it is accepted that glycogen depleting exercises, such as high intensity or long duration exercise should combine high carbohydrate diets with creatine supplementation to achieve heightened muscle glycogen stores [39].
Increasing creatine levels in skeletal muscle to 687% of baseline (0.5mM creatine, thought to be equivalent to 5g creatine[135]) doesn’t seem to per se increase glucose uptake, but increases glucose oxidation (140% of baseline)[341] which is due to a two-fold increase in the activity of α1 and α2 subunits of AMPK, a potency comparable to 1mM of the reference drug AICAR.[341] Glucose uptake associated with AMPK has indeed been noted in diabetic people who are undergoing physical exercise[342] and in contracting skeletal muscle cells,[153][330] but according to rat[343][344][345] and in vitro studies of cells not being contracted,[341] this is not a per se effect of non-exercising tissue but an augmentation of exercise-induced glucose uptake.
It is suggested [16,37] that another mechanism for the effect of creatine could be enhanced muscle glycogen accumulation and GLUT4 expression, when creatine supplementation is combined with a glycogen depleting exercise. Whereas it has been observed [38] that creatine supplementation alone does not enhance muscle glycogen storage. Hickner et al [15] observed positive effects of creatine supplementation for enhancing initial and maintaining a higher level of muscle glycogen during 2 hours of cycling. In general, it is accepted that glycogen depleting exercises, such as high intensity or long duration exercise should combine high carbohydrate diets with creatine supplementation to achieve heightened muscle glycogen stores [39].
Tribulus Terrestris: A fruit from the Mediterranean, this supplement has been used in the Indian traditional medicine of Ayurveda. In addition to helping increase testosterone, many people take it to increase libido and as a cardioprotective aid. (10) Unfortunately, despite the fact that there are claims that tribulus terrestris can increase testosterone levels, studies don’t back up these claims.  There is some evidence, however, that it may improve athletic performance. If you want to choose one of the supplements for men, this should be your pick.
Although muscle stimulation occurs in the gym (or home gym) when lifting weights, muscle growth occurs afterward during rest periods. Without adequate rest and sleep (6 to 8 hours), muscles do not have an opportunity to recover and grow.[citation needed] Additionally, many athletes find that a daytime nap further increases their body's ability to recover from training and build muscles. Some bodybuilders add a massage at the end of each workout to their routine as a method of recovering.[50]
A muscle imbalance—when one muscle is stronger than its opposing muscle—can limit your ability to exercise effectively, and could lead to injury down the line. “It’s important to recognize whether you’re really working the muscles you think you are and recognize if you’ve developed an imbalance that alters your movement pattern,” says Eric Ingram, physical therapist at Louisiana Physical Therapy Centers of Pineville. One common imbalance in women is stronger quads and weaker, tighter hamstrings, thanks to prolonged sitting, high heels, and improper training. If you suspect you have a muscle imbalance, make an appointment with a physical therapist, who will prescribe exercises to even you out.
In young rats given creatine in the diet at 2% of the diet for eight weeks, supplementation appears to increase bone mineral density (BMD) in the lumbar spine with a nonsignificant trend to increase BMD in the femur.[426] Despite the trend, the femur appeared to be 12.3% more resistant to snapping from mechanical stress associated with increased thickness.[426] Menopausal rats (ovarectomized) experience similar benefits, as supplementation of creatine (300mg/kg) for eight weeks during ovarectomy is able to increase phosphorus content of the bone and other biomarkers of bone health, although bone stress resistance was not tested.[427]
How long and how often? Two or three weekly 20- to 30-minute, weight-training sessions are sufficient to start reaping noticeable benefits within four to 12 weeks, such as improved energy and muscle tone. Within six months, most people increase their strength 40 percent or more. Give your body at least one recovery day between sessions (although some people may need more, especially in the beginning).
Having a spotter nearby is particularly important when using free weights. Even someone in great shape sometimes just can't make that last rep. It's no big deal if you're doing biceps curls; all you'll have to do is drop the weight onto the floor. But if you're in the middle of a bench press — a chest exercise where you're lying on a bench and pushing a loaded barbell away from your chest — it's easy to get hurt if you drop the weight. A spotter can keep you from dropping the barbell onto your chest.

One of the biggest goals of bodybuilders is to increase their muscle size and strength. Bodybuilding supplements often contain many ingredients that help to encourage this. Branched-chain amino acids are a common ingredient that can significantly increase muscle growth. Other ingredients help to increase the levels of hormones, such as growth hormone and testosterone, that can also stimulate muscle growth.
The majority of creatine in the human body is in two forms, either the phosphorylated form making up 60% of the stores or in the free form which makes up 40% of the stores. The average 70 kg young male has a creatine pool of around 120-140 g which varies between individuals [10,11] depending on the skeletal muscle fiber type [1] and quantity of muscle mass [11]. The endogenous production and dietary intake matches the rate of creatinine production from the degradation of phosphocreatine and creatine at 2.6% and 1.1%/d respectively. In general, oral creatine supplementation leads to an increase of creatine levels within the body. Creatine can be cleared from the blood by saturation into various organs and cells or by renal filtration [1].
^ Jump up to: a b c d e f g h Momaya A, Fawal M, Estes R (April 2015). "Performance-enhancing substances in sports: a review of the literature". Sports Med. 45 (4): 517–531. doi:10.1007/s40279-015-0308-9. PMID 25663250. Wilson et al. [91] demonstrated that when non-resistance trained males received HMB pre-exercise, the rise of lactate dehydrogenase (LDH) levels reduced, and HMB tended to decrease soreness. Knitter et al. [92] showed a decrease in LDH and creatine phosphokinase (CPK), a byproduct of muscle breakdown, by HMB after a prolonged run. ... The utility of HMB does seem to be affected by timing of intake prior to workouts and dosage [97].