^ Jump up to: a b c d e Cooper R, Naclerio F, Allgrove J, Jimenez A (July 2012). "Creatine supplementation with specific view to exercise/sports performance: an update". Journal of the International Society of Sports Nutrition. 9 (1): 33. doi:10.1186/1550-2783-9-33. PMC 3407788. PMID 22817979. Creatine is produced endogenously at an amount of about 1 g/d. Synthesis predominately occurs in the liver, kidneys, and to a lesser extent in the pancreas. The remainder of the creatine available to the body is obtained through the diet at about 1 g/d for an omnivorous diet. 95% of the bodies creatine stores are found in the skeletal muscle and the remaining 5% is distributed in the brain, liver, kidney, and testes [1].
It is regularly reported that creatine supplementation, when combined with heavy resistance training leads to enhanced physical performance, fat free mass, and muscle morphology [18-22]. A 2003 meta analysis [8] showed individuals ingesting creatine, combined with resistance training, obtain on average +8% and +14% more performance on maximum (1RM) or endurance strength (maximal repetitions at a given percent of 1RM) respectively than the placebo groups. However, contradicting studies have reported no effects of creatine supplementation on strength performance. Jakobi et al [23] found no effects of a short term creatine loading protocol upon isometric elbow flexion force, muscle activation, and recovery process. However, this study did not clearly state if creatine supplementation was administered concurrent with resistance training. Bemben et al [24] have shown no additional benefits of creatine alone or combined with whey protein for improving strength and muscle mass after a progressive 14 weeks (3 days per week) resistance training program in older men. These conflicting results can be explained by the possibility that the supplemented groups were formed by a greater amount of non-responders or even because creatine supplementation was administered on the training days only (3 times a week). This strategy has not been adequately tested as effective in middle aged and older men for maintaining post loading elevated creatine stores [5].
In the 1970s, bodybuilding had major publicity thanks to the appearance of Arnold Schwarzenegger, Franco Columbu, Lou Ferrigno, and others in the 1977 docudrama Pumping Iron. By this time, the IFBB dominated the competitive bodybuilding landscape and the Amateur Athletic Union (AAU) took a back seat. The National Physique Committee (NPC) was formed in 1981 by Jim Manion,[7] who had just stepped down as chairman of the AAU Physique Committee. The NPC has gone on to become the most successful bodybuilding organization in America and is the amateur division of the IFBB. The late 1980s and early 1990s saw the decline of AAU-sponsored bodybuilding contests. In 1999, the AAU voted to discontinue its bodybuilding events.

In October 1994, the Dietary Supplement Health and Education Act (DSHEA) was signed into law in the USA. Under DSHEA, responsibility for determining the safety of the dietary supplements changed from government to the manufacturer and supplements no longer required approval from the U.S. Food and Drug Administration (FDA) before distributing product. Since that time manufacturers did not have to provide FDA with the evidence to substantiate safety or effectiveness unless a new dietary ingredient was added. It is widely believed that the 1994 DSHEA further consolidated the position of the supplement industry and lead to additional product sales.[6]
The genealogy of lifting can be traced back to the beginning of recorded history[1] where humanity's fascination with physical abilities can be found among numerous ancient writings. In many prehistoric tribes, they would have a big rock they would try to lift, and the first one to lift it would inscribe their name into the stone. Such rocks have been found in Greek and Scottish castles.[2] Progressive resistance training dates back at least to Ancient Greece, when legend has it that wrestler Milo of Croton trained by carrying a newborn calf on his back every day until it was fully grown. Another Greek, the physician Galen, described strength training exercises using the halteres (an early form of dumbbell) in the 2nd century.
We’ll define the “bigger muscle groups” as being chest, back, quads and hamstrings, and the “smaller muscle groups” as being biceps, triceps and maybe abs. Shoulders are really somewhere in the middle, though I tend to lean more toward the “smaller” guidelines. Calves, while technically small, are another muscle group that is somewhere in the middle, and I can really go either way depending on the needs of the person.
Creatine pyruvate (also known as creatine 2-oxopropanoate) in an isomolar dose relative to creatine monohydrate has been shown to produce higher plasma levels of creatine (peak and AUC) with no discernible differences in absorption or excretion values.[83] The same study noted increased performance from creatine pyruvate at low (4.4g creatine equivalence) doses relative to citrate and monohydrate, possibly due to the pyruvate group.
If you are doing this on your own, but are overwhelmed and confused about strength training, I know how that feels. It can be scary enough to keep MOST people from starting, which is actually why we created our 1-on-1 Coaching Program. Our coach gets to know you, builds a program based on your experience and goals, will check your form on each movement (via video), and keep you accountable and on track!
Perform the workout three days a week for four weeks, resting at least one day between each session. On the weight exercises, choose a load that allows you to complete a few more reps than the prescribed number (you may need to adjust this load between sets as you discover your strength levels). For instance, if an exercise calls for 12 reps, choose a load that you estimate you can perform 15 reps with before having to stop (but complete only 12).

Creatine is a hydrophilic polar molecule that consists of a negatively charged carboxyl group and a positively charged functional group [64]. The hydrophilic nature of creatine limits its bioavailability [65]. In an attempt to increase creatines bioavailability creatine has been esterified to reduce the hydrophilicity; this product is known as creatine ethyl ester. Manufacturers of creatine ethyl ester promote their product as being able to by-pass the creatine transporter due to improved sarcolemmal permeability toward creatine [65]. Spillane et al [65] analyzed the effects of a 5 days loading protocol (0.30 g/kg lean mass) followed by a 42 days maintenance phase (0.075 g/kg lean mass) of CM or ethyl ester both combined with a resistance training program in 30 novice males with no previous resistance training experience. The results of this study [65] showed that ethyl ester was not as effective as CM to enhance serum and muscle creatine stores. Furthermore creatine ethyl ester offered no additional benefit for improving body composition, muscle mass, strength, and power. This research did not support the claims of the creatine ethyl ester manufacturers.
×