Another study tested male subjects performing two bouts of 30 second isokinetic cycling before and after ingesting 20 g creatine monohydrate daily for 5 days. Work production improved about 4%. Cumulative increases in both peak and total work production over the two exercise bouts were positively correlated with the increase in muscle creatine [14].
It is prudent to note that creatine supplementation has been shown to reduce the body’s endogenous production of creatine, however levels return to normal after a brief period of time when supplementation ceases [1,6]. Despite this creatine supplementation has not been studied/supplemented with for a relatively long period. Due to this, long term effects are unknown, therefore safety cannot be guaranteed. Whilst the long term effects of creatine supplementation remain unclear, no definitive certainty of either a negative or a positive effect upon the body has been determined for many health professionals and national agencies [19,78]. For example the French Sanitary Agency has banned the buying of creatine due to the unproven allegation that a potential effect of creatine supplementation could be that of mutagenicity and carcinogenicity from the production of heterocyclic amines [78]. Long term and epidemiological data should continue to be produced and collected to determine the safety of creatine in all healthy individuals under all conditions [78].

A typical creatine supplementation protocol consists of a loading phase of 20 g CM/d or 0.3 g CM/kg/d split into 4 daily intakes of 5 g each, followed by a maintenance phase of 3-5 g CM/d or 0.03 g CM/kg/d for the duration of the supplementation period [5]. Other supplementation protocols are also used such as a daily single dose of around 3 – 6 g or between 0.03 to 0.1 g/kg/d [15,55] however this method takes longer (between 21 to 28 days) to produce ergogenic effects [5]. Sale et al [56] found that a moderate protocol consisting of 20 g CM taken in 1g doses (evenly ingested at 30-min intervals) for 5 days resulted in reduced urinary creatine and methylamine excretion, leading to an estimated increase in whole body retention of creatine (+13%) when compared with a typical loading supplementation protocol of 4 x 5 g/d during 5 days (evenly ingested at 3 hour intervals). This enhancement in creatine retention would lead to a significantly higher weight gain when people follow a moderate protocol ingestion of several doses of small amounts of CM evenly spread along the day.


^ "Popular sports supplements contain meth-like compound". USA Today. October 25, 2013. Cohen said researchers informed the FDA in May about finding the new chemical compound in Craze. The team found the compound — N,alpha-diethylphenylethylamine — has a structure similar to methamphetamine, a powerful, highly addictive, illegal stimulant drug. They believe the new compound is likely less potent than methamphetamine but greater than ephedrine.
Universal Real Gains is a powerful mass gainer -- each serving contains 602 calories with 53 grams of protein, 84 grams of effective carbohydrates and 5 grams of fiber. It also includes over 15 amino acids and 10 vitamins and minerals to support your muscle building quest. This easy to mix formula is a convenient addition to any shake so you can put on mass and size. You will not find a mass gainer like this anywhere else on the market. Keep Reading »
The reasons for differences in the effect of creatine on testosterone vs. DHT across studies are not clear, but also not mutually exclusive. A measured increase in DHT could indicate that testosterone levels were increased by creatine, but rapidly converted to DHT through a homeostatic mechanism. Differences in study subject populations, methodology, or the presence and type of concurrent exercise could also be contributing factors. At any rate, the literature collectively suggests that creatine has the general ability to cause a modest increase in androgen levels in men.
Build an effective exercise routine. A good diet is required for your body to be able to maximize your potential, but there's no potential at all until you start the process of tearing down your old muscles and rebuilding them bigger, bulkier, and stronger. The best way to do that is to start at the beginning. If you're not sure where to begin, find a solid workout program online and try it out for a while. Don't immediately jump from one program to the next - you'll end up keeping yourself from making steady progress.

Energy: Energy is found in amino acids, also known as creatine, produced naturally in the body and also found in meat such as beef, chicken and pork. The problem with naturally found creatine is that the amount of protein in it is not high, which therefore, draws bodybuilders to supplement it with a powdered version. Bodybuilders use creatine to increase anaerobic energy; this allows them to lift weights for longer periods of time. Creatine also helps to give volume to the muscle cells by adding more water in them, thus making them look fuller. 
A loading phase of 10g creatine monohydrate for two weeks and 4g for the final week in subjects with MELAS (Mitochondrial Encephalomyopathy Lactic Acidosis and Stroke-like episodes) has been noted to increase physical strength relative to baseline, although the poor VO2 max seen in these subjects was not affected.[549] A case study exists in which a patient with a relatively novel mutation in their mitochondrial function (affecting cytochrome B) experienced benefits from creatine at 10g daily.[550] Researchers examining another case of MELAS found both cognitive and physical benefits with 5g creatine supplementation,[551] while four controlled case studies of 100-200mg/kg daily in children with myopathies found improved muscular endurance (30-57%) and muscular power (8-17%) after 100-200mg/kg daily for at least three months.[552]
Terry follows the old-school bodybuilding mentality of isolating each muscle group (back, shoulders, chest, legs and arms) on a five-day cycle. If he’s trying to grow a certain muscle group, he’ll introduce a second workout on the sixth day. Each of Terry’s workouts lasts between 60 and 90 minutes – “any longer and you're either not pushing yourself hard enough or you're talking too much” – and he makes the most of each session by targeting different parts of each muscle.
Side-Effects: While the signs of a great body may make one think that there cannot be anything wrong with bodybuilding supplements, the facts speak otherwise. Bodybuilding supplements do have side-effects and you must listen to your trainer before giving in to the thoughts of buying one. Creatine can cause heart problems, kidney problems, dehydration, diarrhoea and muscle cramping. You must also discuss your medical history with the trainer. 
While this nonessential amino acid may not deliver earth-shattering PRs or extreme muscle growth, it does play an important role in repair and recovery. Glutamine works by removing excess ammonia, which can accumulate during intense exercise, helping to regulate your body's acid-base balance. Individuals who are engaged in heavy resistance training, two-a-day training splits, or are in a calorie deficit may benefit from the extra support of glutamine supplementation.
An exercise should be halted if marked or sudden pain is felt, to prevent further injury. However, not all discomfort indicates injury. Weight training exercises are brief but very intense, and many people are unaccustomed to this level of effort. The expression "no pain, no gain" refers to working through the discomfort expected from such vigorous effort, rather than to willfully ignore extreme pain, which may indicate serious soft tissue injuries. The focus must be proper form, not the amount of weight lifted.[23]
Studies that use a dosage range typical of creatine supplementation (in the range of 5g a day following an acute loading period) note increases to total body water of 6.2% (3.74lbs) over 9 weeks and[608] 1.1kg over 42 days.[609] Interestingly, some studies comparing creatine paired with training against training itself fail to find a significant difference in percentage of water gained (which is inherently to activity) with standard oral doses of creatine[609][607][610] (although low dose creatine supplementation of 0.03g/kg or 2.3g daily doesn’t appear to increase water retention[611]) despite more overall water weight being gained, due to an equal gain of dry mass in muscles. One study has quantified the percentage increase in mass of muscle cells to be 55% water, suggesting the two groups are fairly equal.[609]

Jager et al [60] observed 1.17 and 1.29 greater peak plasma creatine concentration 1 hour after ingesting creatine pyruvate compared to isomolar amount of CM and creatine citrate respectively. However time to peak concentration, and velocity constants of absorption and elimination, was the same for all three forms of creatine. Although not measured in this study it is questionable that these small differences in plasma creatine concentrations would have any effect on the increase of muscle creatine uptake. Jäger et al [61] investigated the effects of 28-days of creatine pyruvate and citrate supplementation on endurance capacity and power measured during an intermittent handgrip (15 s effort per 45s rest) exercise in healthy young athletes. The authors used a daily dose protocol with the intention to slowly saturate muscle creatine stores. Both forms of creatine showed slightly different effects on plasma creatine absorption and kinetics. The two creatine salts significantly increased mean power but only pyruvate forms showed significant effects for increasing force and attenuating fatigability during all intervals. These effects can be attributed to an enhanced contraction and relaxation velocity as well as a higher blood flow and muscle oxygen uptake. On the other hand, the power performance measured with the citrate forms decreases with time and improvements were not significant during the later intervals. In spite of these positive trends further research is required about the effects of these forms of creatine as there is little or no evidence for their safety and efficacy. Furthermore the regularity status of the novel forms of creatine vary from country to country and are often found to be unclear when compared to that of CM [62].


Wilkinson, S. B., Tarnopolsky, M. A., MacDonald, M. J., MacDonald, J. R., Armstrong, D., & Phillips, S. M. (2007). Consumption of fluid skim milk promotes greater muscle protein accretion after resistance exercise than does consumption of an isonitrogenous and isoenergetic soy-protein beverage. The American Journal of Clinical Nutrition, 85(4), 1031-1040.
Of course, cardio is an important part of fitness too, but the benefits of strength training are major. Strength training helps build muscle, and lean muscle is better at burning calories when the body is at rest, which is important whether you're trying to lose weight or maintain it. It also helps strengthens joints and bones, avoid injury, improve your muscular endurance, and will help you give it your all during your other workouts, whether that means setting a new PR if you're a runner or pushing (and pulling) a little harder with your legs during your favorite indoor cycling class.
Creatine, the amino acid, naturally helps your body produce more adenosine triphosphate, or ATP, a small molecule that’s actually your body's primary energy source. But research shows that your body is only capable of storing enough ATP for 8 to 10 seconds of high-intensity exercise — and after that, it needs to produce new ATP for you to continue. (9)

In regard to the blood brain barrier (BBB), which is a tightly woven mesh of non-fenestrated microcapillary endothelial cells (MCECs) that prevents passive diffusion of many water-soluble or large compounds into the brain, creatine can be taken into the brain via the SLC6A8 transporter.[192] In contrast, the creatine precursor (guanidinoacetate, or GAA) only appears to enter this transporter during creatine deficiency.[192] More creatine is taken up than effluxed, and more GAA is effluxed rather than taken up, suggesting that creatine utilization in the brain from blood-borne sources[192] is the major source of neural creatine.[193][192] However, “capable of passage” differs from “unregulated passage” and creatine appears to have tightly regulated entry into the brain in vivo[193]. After injecting rats with a large dose of creatine, creatine levels increased and plateaued at 70uM above baseline levels. These baseline levels are about 10mM, so this equates to an 0.7% increase when superloaded.[193] These kinetics may be a reason for the relative lack of neural effects of creatine supplementation in creatine sufficient populations.

×