If you’re not lifting super-heavy weights, doing high-intensity workouts, or eating a mainly vegan or vegetarian diet, your body probably makes as much creatine as it needs. “Creatine is naturally found in animal-based products,” says Bates, “so your body can make plenty of creatine as long as you have a balanced diet that includes animal-based products.” Protein sources like beef, chicken, pork, and fish help your body produce the creatine it needs — it varies depending on the source, but, in general, a 3-ounce serving of meat will have about 0.4 grams (g) of creatine, Bates says. (6)
The muscle endurance objective is pursued when you want your muscles to be able to perform the same motions over an extended period of time or in other words when you want your muscles to be strong and not become tired rapidly. You'll want to use at least 4 sets from which at least 16 repetitions are performed. The muscle endurance objective is often used for muscles in your lower body, such as those located in your legs or your buttocks.
A typical creatine supplementation protocol consists of a loading phase of 20 g CM/d or 0.3 g CM/kg/d split into 4 daily intakes of 5 g each, followed by a maintenance phase of 3-5 g CM/d or 0.03 g CM/kg/d for the duration of the supplementation period [5]. Other supplementation protocols are also used such as a daily single dose of around 3 – 6 g or between 0.03 to 0.1 g/kg/d [15,55] however this method takes longer (between 21 to 28 days) to produce ergogenic effects [5]. Sale et al [56] found that a moderate protocol consisting of 20 g CM taken in 1g doses (evenly ingested at 30-min intervals) for 5 days resulted in reduced urinary creatine and methylamine excretion, leading to an estimated increase in whole body retention of creatine (+13%) when compared with a typical loading supplementation protocol of 4 x 5 g/d during 5 days (evenly ingested at 3 hour intervals). This enhancement in creatine retention would lead to a significantly higher weight gain when people follow a moderate protocol ingestion of several doses of small amounts of CM evenly spread along the day.
Creatine is involved indirectly in whole body methylation processes. This is due to creatine synthesis having a relatively large methyl cost, as the creatine precursor known as guanidinoacetate (GAA) requires a methyl donation from S-adenosyl methionine (SAMe) in order to produce creatine. This may require up to half of the methyl groups available in the human body.[35][122]
Genetic deficiencies in the creatine biosynthetic pathway lead to various severe neurological defects.[26] Clinically, there are three distinct disorders of creatine metabolism. Deficiencies in the two synthesis enzymes can cause L-arginine:glycine amidinotransferase deficiency caused by variants in GATM and guanidinoacetate methyltransferase deficiency, caused by variants in GAMT. Both biosynthetic defects are inherited in an autosomal recessive manner. A third defect, creatine transporter defect, is caused by mutations in SLC6A8 and inherited in a X-linked manner. This condition is related to the transport of creatine into the brain.[27]
Creatine (/ˈkriːətiːn/ or /ˈkriːətɪn/[1] is an organic compound with the nominal formula (H2N)(HN)CN(CH3)CH2CO2H. This species exists in various modifications (tautomers) in solution. Creatine is found in vertebrates where it facilitates recycling of adenosine triphosphate (ATP), the energy currency of the cell, primarily in muscle and brain tissue. Recycling is achieved by converting adenosine diphosphate (ADP) back to ATP via donation of phosphate groups. Creatine also acts as a buffer.[2]
Studies have deemed staying in the range of 3 to 5 g per day range for maintenance to be safe, and while higher levels have been tested under acute conditions without adverse effects, there isn’t sufficient evidence to determine long-term safety. (8) If you’re interested in upping your creatine consumption, you should work with your doctor or dietitian to make sure it's right for your goals and health history.
Oral ingestion of 1-1000mg/kg bodyweight of creatine in mice was able to exert an anti-depressive effect, which was blocked by dopamine receptor antagonists. A low dose of creatine (0.1mg/kg) was able to enhance the dopaminergic effects of dopamine receptor activators, suggesting supplemental creatine can positively influence dopamine signaling and neurotransmission.[252]
The first open label trial on ALS failed to significantly alter lung function as assessed by FEV (when comparing the rate of decline pretreatment relative to treatment).[545] Creatine has elsewhere failed to benefit lung function at 5g daily for months relative to control[546] and failed to significantly attenuate the rate of lung function deterioration over 16 months at 10g daily[505] and 5g daily over nine months.[507]
Cancel, pause, or adjust your order at any time, hassle free. Your credit card will only be charged when your order ships. The discount applied every time is 15% off. Since it would be weird to subscribe to a kettlebell, the subscriptions and subscription discounts are only for things you'll need often, like supplements, foods, and personal care items.
Taking high doses of creatine might harm the kidneys. Some medications can also harm the kidneys. Taking creatine with medications that can harm the kidneys might increase the chance of kidney damage.

Some of these medications that can harm the kidneys include cyclosporine (Neoral, Sandimmune); aminoglycosides including amikacin (Amikin), gentamicin (Garamycin, Gentak, others), and tobramycin (Nebcin, others); nonsteroidal anti-inflammatory drugs (NSAIDs) including ibuprofen (Advil, Motrin, Nuprin, others), indomethacin (Indocin), naproxen (Aleve, Anaprox, Naprelan, Naprosyn), piroxicam (Feldene); and numerous others.

I’m going to cover this in detail in a bit, but for right now, just know this: it’s VERY possible (and common) to gain weight fast in the hopes of gaining muscle fast. The problem, however, is that the majority of the “weight” a person in this scenario will end up gaining will be body fat rather than muscle mass. This is something that needs to be avoided at all costs, and I’ll show you how a little later.
Kornblum, C., Schroder, R., Muller, K., Vorgerd, M., Eggers, J., Bogdanow, M., Papassotiropoulos, A., Fabian, K., Klockgether, T., and Zange, J. Creatine has no beneficial effect on skeletal muscle energy metabolism in patients with single mitochondrial DNA deletions: a placebo-controlled, double-blind 31P-MRS crossover study. Eur J Neurol 2005;12:300-309. View abstract.
In regard to liver fat buildup (steatosis), which is normally associated with reduced availability of S-adenosyl methionine[495][496] and a suppression in expression of genes involved in fatty acid oxidation (PPARα and CPT1), creatine supplementation at 1% of the rat diet alongside a diet that induces fatty liver is able to fully prevent (and nonsignificantly reduce relative to the control given standard diets) the aforementioned changes and the state of steatosis, as well as changes in serum biomarkers (glucose and insulin) that accompany steatosis.[125] 

Some people do have allergies to soy, or they have an intolerance to soy. If you notice certain symptoms (like a headache) after soy consumption, you may have an intolerance. Discovering your food intolerances/allergies would also be handled by a Dietitian. For the general population who are not allergic/intolerant to soy, however, soy-based products can be a part of a healthy diet. New research has shown that soy is not harmful as people fear. If soy gives you issues, you could always opt for whey protein, pea protein or other forms of vegetable protein. Have you seen our article on protein powders? Click here.
One pilot study using 150mg/kg creatine monohydrate for a five day loading phase followed by maintenance (60mg/kg) for the remainder of the five weeks noted that supplementation was associated with fewer muscle symptoms and complaints alongside improved muscular function,[572] yet a later trial trying to replicate the obsevations using 150mg/kg daily for five weeks noted the opposite, that creatine supplementation exacerbated symptoms.[573] 
When creatine supplementation is combined with heavy resistance training, muscle insulin like growth factor (IGF-1) concentration has been shown to increase. Burke et al [2] examined the effects of an 8 week heavy resistance training protocol combined with a 7 day creatine loading protocol (0.25 g/d/kg lean body mass) followed by a 49 day maintenance phase (0.06 g/kg lean mass) in a group of vegetarian and non-vegetarian, novice, resistance trained men and women. Compared to placebo, creatine groups produced greater increments in IGF-1 (78% Vs 55%) and body mass (2.2 Vs 0.6 kg). Additionally, vegetarians within the supplemented group had the largest increase of lean mass compared to non vegetarian (2.4 and 1.9 kg respectively). Changes in lean mass were positively correlated to the modifications in intramuscular total creatine stores which were also correlated with the modified levels of intramuscular IGF-1. The authors suggested that the rise in muscle IGF-1 content in the creatine group could be due to the higher metabolic demand created by a more intensely performed training session. These amplifying effects could be caused by the increased total creatine store in working muscles. Even though vegetarians had a greater increase in high energy phosphate content, the IGF-1 levels were similar to the amount observed in the non vegetarian groups. These findings do not support the observed correlation pattern by which a low essential amino acid content of a typical vegetarian diet should reduce IGF-1 production [33]. According to authors opinions it is possible that the addition of creatine and subsequent increase in total creatine and phosphocreatine storage might have directly or indirectly stimulated production of muscle IGF-I and muscle protein synthesis, leading to an increased muscle hypertrophy [2].
Arginine mainly benefits the body in two ways. The first of these is by producing nitric oxide. When arginine enters the body, some of it gets converted into nitric oxide. Nitric oxide is important for regulating blood pressure, as it can enlarge the blood vessels. Larger blood vessels allow the body to increase blood flow throughout the body, bringing extra nutrients and oxygen to the muscles during exercise.
I get it. Bodybuilding is a subjective sport with judges that determine who wins based on the judges opinions. In the other resistance training sports you win objectively by outperforming your competitors. Bodybuilders also tend to work out differently with little concern for the weight being lifted, so long as the end result is a better-looking body. This can make bodybuilding type training seem narcissistic and shallow. That’s too bad because hard core resistance training athletes can learn a LOT from bodybuilders and how they train.
After all, we want you to be CONFIDENT and not overwhelmed, as the sooner you start strength training, the sooner you learn the ropes and start to make progress! We cover all of this in our free guide, Strength 101: Everything You Need to Know, along with free workout plans – grab all the goodies fo’ free when you join our worldwide Rebellion with your email in the box below!
In regard to the blood brain barrier (BBB), which is a tightly woven mesh of non-fenestrated microcapillary endothelial cells (MCECs) that prevents passive diffusion of many water-soluble or large compounds into the brain, creatine can be taken into the brain via the SLC6A8 transporter.[192] In contrast, the creatine precursor (guanidinoacetate, or GAA) only appears to enter this transporter during creatine deficiency.[192] More creatine is taken up than effluxed, and more GAA is effluxed rather than taken up, suggesting that creatine utilization in the brain from blood-borne sources[192] is the major source of neural creatine.[193][192] However, “capable of passage” differs from “unregulated passage” and creatine appears to have tightly regulated entry into the brain in vivo[193]. After injecting rats with a large dose of creatine, creatine levels increased and plateaued at 70uM above baseline levels. These baseline levels are about 10mM, so this equates to an 0.7% increase when superloaded.[193] These kinetics may be a reason for the relative lack of neural effects of creatine supplementation in creatine sufficient populations.
×