Creatine Ethyl Ester, or CEE for short, is a powdered form of creatine which has an ethyl group attached to the creatine. This is said to make the creatine more easily absorbed in the human body which would allow you to benefit the most. The studies have not been entirely conclusive as to whether CEE is better than creatine monohydrate. Since Creatine monohydrate is the single most researched form of creatine, it is
A pre-workout may contain a variety of different ingredients, but some common ones include caffeine (energy booster), citruline malate (fatigue killer), creatine (muscle recovery), and beta-alanine (reduces fatigue and gives increased feelings of sensation). If you find you are exhausted and need a little pick me up to power through your workouts, consider implementing a pre-workout supplement into your stack.
It is suggested [16,37] that another mechanism for the effect of creatine could be enhanced muscle glycogen accumulation and GLUT4 expression, when creatine supplementation is combined with a glycogen depleting exercise. Whereas it has been observed [38] that creatine supplementation alone does not enhance muscle glycogen storage. Hickner et al [15] observed positive effects of creatine supplementation for enhancing initial and maintaining a higher level of muscle glycogen during 2 hours of cycling. In general, it is accepted that glycogen depleting exercises, such as high intensity or long duration exercise should combine high carbohydrate diets with creatine supplementation to achieve heightened muscle glycogen stores [39].

By increasing the overall pool of cellular phosphocreatine, creatine supplementation can accelerate the reycling of ADP into ATP. Since ATP stores are rapidly depleted during intense muscular effort, one of the major benefits of creatine supplementation is its ability to regenerate ATP stores faster, which can promote increased strength and power output. Over 95% of creatine is stored in muscle at a maximum cellular concentration of 30uM. Creatine storage capacity is limited, though it increases as muscle mass increases.[24] A 70 kg male with an average physique is assumed to have total creatine stores of approximately 120g.[25] The body can store a lot more energy as glycogen in the liver, brain, and muscles,[26][27] and even more as fat.
I'm 6'1" 175 pounds 27 years old. I would like to increase my general muscle mass and reduce my stomach fat. I would consider myself and ectomorph (hard gainer) as I have never really developed much muscle while I've always been very active in sports and periodic weight training. Over the past year I lost about 30 pounds (nearly all fat) by reducing my caloric intake effectively and regular whole body exercises. I was on my way to my ideal body composition until I became a bike courier. I've been a bike messenger for 9 months and recently my stomach fat has started to return. I'm riding 50+ miles each weekday riding for 9 hours a day. How many calories should I be eating? I've tried everywhere between 2400-3,500 cal/day. Is it possible for me to be eating too few calories while still accumulating stomach fat? Is it realistic for me to be able to maintain or even build muscle mass in this scenario? Please help, thanks.
Related to exercise and fitness, BCAAs are taken to help reduce muscle breakdown, which is why they may be known as muscle building supplements. Leucine, in particular, is known for playing an important role in muscle protein synthesis, which can help with muscle gain and maintenance. Some also claim that BCAAs can enhance performance, although many studies also refute this claim.
Some other cytokines and hormones may increase the receptor activity. These include growth hormone (GH) which acts upon the growth hormone receptor (GHR)[166][167] to stimulate c-Src[168][169] which directly increases the activity of the CrT via phosphorylation. This is known to occur with the 55kDa version of c-Src but not the 70kDa version and requires CD59 alongside c-Src.[170]
In muscle cells, the creatine transporter is predominantly localized to the sarcolemmal membrane. Western blot analysis of creatine transporter expression revealed the presence of two distinc protein bands, migrating at 55kDa and 70kDa on reducing SDS-PAGE gels.[147][148] The 73kDa band has been reported to be the predominant band in humans, with no differences based on gender.[148] A more recent report demonstrated that the 55kDa creatine transporter variant is glycosylated, forming the 73 kDa protein. Therefore, the 55 and 75kDa protein bands are actually immature and mature/processed forms of the creatine transporter protein, respectively.[149]
XPI's Myotein is a premium protein blend that features Casein, Whey Protein Isolate and Whey Protein Concentrate. That makes 25 grams of protein per serving of the most advanced protein formula, engineered for fast absorption and utilization. Each scoop also contains 2 grams fat and 2 grams carbs, and additional digestive enzymes for increased bio-availability. With several creamy flavors to choose from, Myotein is rated one of the best tasting protein powders on the market. Keep Reading »
Although it does not appear to influence baseline antioxidant enzymes (measured in red blood cells), one week of creatine loading in otherwise healthy young adults has increased red blood cell (RBC) content of the superoxide dismutase (SOD) enzyme in response to a sprint test by 8.1% immediately after exercise. This was no longer detectable after an hour since placebo increased to match.[299] Glutathione and catalase are unaffected.[299]

A: Depending upon your experience level, preference, recovery capacity, and time available, you’ll likely find that 3-5 strength training sessions per week is the sweet spot. If you’re just getting started with weight training, then you should stick with 3 days per week and work your way up. Novices and early intermediates can handle 4 days per week with a split such as an upper lower and seasoned intermediate lifters may be able to handle 5 sessions per week depending upon the programming, recovery, and nutrition strategies that are in place.
Myotonic Dystrophy type I (DM1) is an inhereted muscular disorder caused by an expanded CTG repeat in the DMPK gene on chromosome 19q13.3 (genetic cause of the disorder[561]) resulting in muscular degeneration and myotonia. The related myopathy, Myotonic Dystrophy type II (DM2) which is also known as proximal myotonic myopathy (PROMM) is due to a CCTG repeat on 3q,[562] and is less affected by myotonia and more by muscular pain and weakness. There is no cure for either because they are genetic disorders, so current therapies are aimed at reducing side-effects. Therapies include modafinil for the somnolence[563] and perhaps creatine for the reduction in strength and functionality.[548]
I mean the first two ‘BS’ items focal point is lifting heavy, and then immediately the article goes into Step 1 – focus on 5-10 rep and 6-8 rep (heavier sets) — given we’re not powerlifting 1 rep or 3 rep max. Generally 6 rep sets we’re lifting heavy still… Does have a lot of good general info, but to me it almost feels like the bullet points of what supposedly not to do is actually a table of contents of what Jason is recommending we do do throughout the article…

A great analogy that I like is that the balance between training and recovery is like digging a hole. Each time you lift, you dig yourself deeper and make it harder to climb out of the hole. To get back out again, you have to fill in the hole to return to ground level, and the only way to fill it is with food and rest. If you overdo it in the gym by pushing too hard, you won’t be able to train as often or at a high capacity. Eventually, you’ll get injured.
^ Jump up to: a b c d e f g h Momaya A, Fawal M, Estes R (April 2015). "Performance-enhancing substances in sports: a review of the literature". Sports Med. 45 (4): 517–531. doi:10.1007/s40279-015-0308-9. PMID 25663250. Wilson et al. [91] demonstrated that when non-resistance trained males received HMB pre-exercise, the rise of lactate dehydrogenase (LDH) levels reduced, and HMB tended to decrease soreness. Knitter et al. [92] showed a decrease in LDH and creatine phosphokinase (CPK), a byproduct of muscle breakdown, by HMB after a prolonged run. ... The utility of HMB does seem to be affected by timing of intake prior to workouts and dosage [97].
The creatine transporter is a sodium[139][140] and chloride[141][142] dependent membrane-associated transporter that belongs to the Na+/Cl-dependent family of neurotransmitter transporters.[143] In muscle cells and most other cell types,[131][141] the isomer of the creatine transporter is known as SLC6A8 (solute carrier family 6, member 8). SLC6A8 is encoded by the gene present on the Xq28 region of the human X-chromosome and is expressed in most tissues.[144] A related gene encoding a creatine transporter variant has also been identified at 16p11.1 that is expressed exclusively in the testes.[145] These two transporters share 98% homology.[144][145]

Lyoo, I. K., Yoon, S., Kim, T. S., Hwang, J., Kim, J. E., Won, W., Bae, S., & Renshaw, P. F. (2012, September). A randomized, double-blind placebo-controlled trial of oral creatine monohydrate augmentation for enhanced response to a selective serotonin reuptake inhibitor in women with major depressive disorder. American Journal of Psychiatry. 169(9):937-45. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/22864465


Creatine (/ˈkriːətiːn/ or /ˈkriːətɪn/[1] is an organic compound with the nominal formula (H2N)(HN)CN(CH3)CH2CO2H. This species exists in various modifications (tautomers) in solution. Creatine is found in vertebrates where it facilitates recycling of adenosine triphosphate (ATP), the energy currency of the cell, primarily in muscle and brain tissue. Recycling is achieved by converting adenosine diphosphate (ADP) back to ATP via donation of phosphate groups. Creatine also acts as a buffer.[2]
In addition to being potentially harmful, some have argued that there is little evidence to indicate any benefit to using bodybuilding protein or amino acid supplements. "In view of the lack of compelling evidence to the contrary, no additional dietary protein is suggested for healthy adults undertaking resistance or endurance exercise".[18] In dispute of this, one more recent meta-analysis concluded that for athletes participating in resistance exercise training and consuming protein supplements for an average of 13 weeks, total protein intake up to 1.6 g per kg body weight per day would result in an increase in strength and fat-free mass, i.e. muscle, but that higher intakes would not further contribute. The muscle mass increase was statistically significant but modest - averaging 0.3 for all trials and 1.0 to 2.0 kg, for protein intake ≥ 1.6 g/kg/day.[3]
Preparation – If you have physique or aesthetic goals then you’re going to have monitor your nutrition. That being said, it will require a bit of work to prepare some healthy meals and ensuring you’re getting enough calories. Not only that, you must approach training in the same way. If you don’t have your gym bag essentials prepped, you’ll end up wasting time looking for your belt and wrist wraps which should already be packed.
Women who train hard and reach low body fat levels, say under 10 percent, may be at risk of losing their periods as a result of hormonal disruption to estrogen production. Exercise-induced estrogen declines can result in bone loss in a way similar to that which occurs at the menopause. Loss of periods from athletic training is not uncommon but does require that you see a doctor, or better still, a sports physician and sports nutritionist to assess what is required to address the problem. Calcium supplements may be a part of the solution if bone health is likely to be affected. 

Synthesis primarily takes place in the kidney and liver, with creatine then being transported to the muscles via the blood. The majority of the human body's total creatine and phosphocreatine stores is located in skeletal muscle, while the remainder is distributed in the blood, brain, and other tissues.[17][18][20] Typically, creatine is produced endogenously at an estimated rate of about 8.3 mmol or 1 gram per day in young adults.[16][17] Creatine is also obtained through the diet at a rate of about 1 gram per day from an omnivorous diet.[17][18] Some small studies suggest that total muscle creatine is significantly lower in vegetarians than non-vegetarians, as expected since foods of animal origin are the primary source of creatine. However, subjects happened to show the same levels after using supplements.[21]


It’s perhaps best known for the aesthetic benefits. Creatine increases muscle size relatively quickly and while that’s in part due to an increase in muscle water content — a good thing, since it means we’re better hydrated — it does indeed appear to lead to actual hypertrophy over time. And bigger muscles aren’t just aesthetic: larger muscles can improve work capacity, explosiveness, fat oxidation, injury resilience, and recovery.
Another study found that one week of creatine supplementation at 25 g/day enhanced muscular performance during repeated sets of bench press and jump squat exercise. Creatine supplementation appeared to allow the subjects to complete their workouts at a higher intensity. The researchers concluded that, over time, working at higher intensities may provide a more intense training stimulus and improved muscular adaptations [10].
The majority of studies have used nothing but a loading period and the duration, overall, was about a week. This is partially because one study that noted benefit with a loading period failed to note benefit with prolonged supplementation.[156] Lowballing supplementation at 2g a day in high active swimmers does not appear to be sufficient to alter any function in skeletal muscle.[383]
We’re so confident that you’re going to love our supplements that we offer a 30-day guarantee. If you have any questions about any of our products, please don’t hesitate to call our friendly experts at (512) 394-7995, or feel free to email us at [email protected] The right supplements can make a tremendous difference in your workouts, so don’t wait to get started. Shop the best bodybuilding supplements at Bare Performance Nutrition now.
Studies with animal and cellular models demonstrated positive effect of creatine ingestion on neurodegenerative diseases. These effects have been attributed to improved overall cellular bioenergetics due to an expansion of the phosphocreatine pool [50]. Creatine deficiency syndromes, due to deficiency of glycine amidinotransferase and guanidinoacetate methyltransferase, can cause decreases or complete absence of creatine in the central nervous system. Syndromes of this nature have the possibility to be improved by supplementing orally with creatine. Brain creatine deficiency resulting from ineffective crea T1 has been shown not to be effectively treated with oral creatine supplementation [51]. Additionally, oral creatine administration in patients with myopathies has shown conflicting results depending on the type of myopathy and creatine transport systems disorders [4].
Under most circumstances, sports drinks do not offer a physiological benefit over water during weight training.[18] However, high-intensity exercise for a continuous duration of at least one hour may require the replenishment of electrolytes which a sports drink may provide.[19] Some may maintain that energy drinks, such as Red Bull that contain caffeine, improve performance in weight training and other physical exercise, but in fact, these energy drinks can cause dehydration, tremors, heat stroke, and heart attack when consumed in excess.[20] 'Sports drinks' that contain simple carbohydrates & water do not cause ill effects, but are most likely unnecessary for the average trainee. More recently, people have been taking pre-workout before working out to increase performance. The main ingredients in these pre-workouts are: beta-alanine, creatine, BCAAs (branched chain amino acids) and caffeine.[21]
Sound complicated? Fortunately, there's an easy rule of thumb for increasing your training volume: For each exercise, perform three to six sets of six to 12 reps, resting for 30 to 90 seconds between each set, she says. The weight used should be enough that you can get out your last reps with proper form but wouldn't be able to perform any additional reps.

In regard to the blood brain barrier (BBB), which is a tightly woven mesh of non-fenestrated microcapillary endothelial cells (MCECs) that prevents passive diffusion of many water-soluble or large compounds into the brain, creatine can be taken into the brain via the SLC6A8 transporter.[192] In contrast, the creatine precursor (guanidinoacetate, or GAA) only appears to enter this transporter during creatine deficiency.[192] More creatine is taken up than effluxed, and more GAA is effluxed rather than taken up, suggesting that creatine utilization in the brain from blood-borne sources[192] is the major source of neural creatine.[193][192] However, “capable of passage” differs from “unregulated passage” and creatine appears to have tightly regulated entry into the brain in vivo[193]. After injecting rats with a large dose of creatine, creatine levels increased and plateaued at 70uM above baseline levels. These baseline levels are about 10mM, so this equates to an 0.7% increase when superloaded.[193] These kinetics may be a reason for the relative lack of neural effects of creatine supplementation in creatine sufficient populations.
×