The reasons for differences in the effect of creatine on testosterone vs. DHT across studies are not clear, but also not mutually exclusive. A measured increase in DHT could indicate that testosterone levels were increased by creatine, but rapidly converted to DHT through a homeostatic mechanism. Differences in study subject populations, methodology, or the presence and type of concurrent exercise could also be contributing factors. At any rate, the literature collectively suggests that creatine has the general ability to cause a modest increase in androgen levels in men.
^ Jump up to: a b Barcelos RP, Stefanello ST, Mauriz JL, Gonzalez-Gallego J, Soares FA (2016). "Creatine and the Liver: Metabolism and Possible Interactions". Mini Reviews in Medicinal Chemistry. 16 (1): 12–8. doi:10.2174/1389557515666150722102613. PMID 26202197. The process of creatine synthesis occurs in two steps, catalyzed by L-arginine:glycine amidinotransferase (AGAT) and guanidinoacetate N-methyltransferase (GAMT), which take place mainly in kidney and liver, respectively. This molecule plays an important energy/pH buffer function in tissues, and to guarantee the maintenance of its total body pool, the lost creatine must be replaced from diet or de novo synthesis.
Lifters who follow high-volume or high-intensity resistance-training programs, as many bodybuilders do, may also benefit from carbohydrate intake immediately post-workout. Compared with a placebo, carbohydrates combined with protein immediately post-workout and one hour after a bout of resistance exercise have been shown to increase insulin levels and rates of glycogen resynthesis.[19]
The majority of creatine in the human body is in two forms, either the phosphorylated form making up 60% of the stores or in the free form which makes up 40% of the stores. The average 70 kg young male has a creatine pool of around 120-140 g which varies between individuals [10,11] depending on the skeletal muscle fiber type [1] and quantity of muscle mass [11]. The endogenous production and dietary intake matches the rate of creatinine production from the degradation of phosphocreatine and creatine at 2.6% and 1.1%/d respectively. In general, oral creatine supplementation leads to an increase of creatine levels within the body. Creatine can be cleared from the blood by saturation into various organs and cells or by renal filtration [1].
If there are any benefits for swimming performance from creatine supplementation, they appear to be limited to a 50 meter sprint or a handful of 50 meter sprints with short intermissions. Excessive sprinting (over six sprints with short breaks) or too long of a break (five minutes rather than two) seem to not be associated with the benefits of creatine supplementation.

As mentioned, protein is essential for building muscle. If you are unable to consume the recommended amount of protein through diet alone, add protein powder for building muscle as a supplement. This applies to nearly anyone hoping to gain muscle mass since it’s not easy to pack in nearly 100 grams of protein a day through chicken, eggs and legumes alone.
It’s important to remember that since everybody is different, these estimates are just that. How the numbers work out for each person will definitely vary. So many factors—like genetics, hormones, sleep, and diet—can change the rate at which our bodies burn calories. And some people may have a harder time than others when it comes losing fat or gaining muscle—again, there are so many factors at play and our body chemistries are all different. Strength training is important for many, many, many other reasons (more on that later), but if you’re looking to increase your metabolism, it’s important to have realistic expectations and know that strength training can make a difference, but probably won’t drastically affect how many calories you burn from one day to the next.
Unfortunately, it’s hard to significantly increase levels through food alone. That’s where supplementation comes in. For instance, in one 12-week study of resistance-trained individuals, taking HMB in tandem with a high-intensity lifting routine significantly improved muscle strength and size compared to lifting alone. Plus, in the off-chance that you push yourself too hard, HMB helps prevent the effects of overtraining—including muscle loss.
While many of the claims are based on scientifically based physiological or biochemical processes, their use in bodybuilding parlance is often heavily colored by bodybuilding lore and industry marketing and as such may deviate considerably from traditional scientific usages of the terms. In addition, ingredients listed have been found at times to be different from the contents. In 2015, Consumer Reports reported unsafe levels of arsenic, cadmium, lead and mercury in several of the protein powders that were tested.[7]
You've figured out the exercises you should be doing, but what about the number of sets and repetitions? Your decision should be based on your goals. The American College of Sports Medicine recommends 8-12 reps for muscular strength and 10-15 reps for muscular endurance. They also recommend at least 1 set of each exercise to fatigue although you'll find that most people perform about 2-3 sets of each exercise. In general:
I learned from this to focus on the body weight exercises. I never understood why I could lift a lot of weight, but felt weak when it came to dips, pull ups, push ups etc. Normally I spend 2 hours in a gym: 20 min jogging, 80 min lifting, 20 min jogging, 5 days a week. After reading this I’m excited to incorporate HIIT training in addition to mobility training on my off days, because I think I was wasting a lot of time and effort. I can push way harder on lifting days without the jog beforehand, so I’ll also be able to make the most of 60 minutes…
Carbohydrates play an important role for bodybuilders. They give the body energy to deal with the rigors of training and recovery. Carbohydrates also promote secretion of insulin, a hormone enabling cells to get the glucose they need. Insulin also carries amino acids into cells and promotes protein synthesis.[26] Insulin has steroid-like effects in terms of muscle gains.[27] It is impossible to promote protein synthesis without the existence of insulin, which means that without ingesting carbohydrates or protein—which also induces the release of insulin—it is impossible to add muscle mass.[28] Bodybuilders seek out low-glycemic polysaccharides and other slowly digesting carbohydrates, which release energy in a more stable fashion than high-glycemic sugars and starches. This is important as high-glycemic carbohydrates cause a sharp insulin response, which places the body in a state where it is likely to store additional food energy as fat. However, bodybuilders frequently do ingest some quickly digesting sugars (often in form of pure dextrose or maltodextrin) just before, during, and/or just after a workout. This may help to replenish glycogen stored within the muscle, and to stimulate muscle protein synthesis.[29]
When looking specifically at human studies, there has been a failure of creatine supplementation to induce or exacerbate kidney damage in people with amyotrophic lateral sclerosis (ALS). Subjects do not experience kidney damage for up to or over a year’s worth of supplementation in the 5-10g range.[505][506][507] Postmenopausal women,[517] people with type II diabetes,[518] people on hemodialysis,[313] otherwise healthy elderly,[519] young people,[454][520][521] and athletes do not experience kidney damage either.[324] Moreover, numerous scientific reviews on both the long- and short-term safety of supplemental creatine have consistently found no adverse effects on kidney function in a wide range of doses.[522][523][524][452][525][451][526][527] However, while doses >10 g/day have been found not to impair kidney function, there are fewer long-term trials using such high chronic daily intakes.[527]
The first open label trial on ALS failed to significantly alter lung function as assessed by FEV (when comparing the rate of decline pretreatment relative to treatment).[545] Creatine has elsewhere failed to benefit lung function at 5g daily for months relative to control[546] and failed to significantly attenuate the rate of lung function deterioration over 16 months at 10g daily[505] and 5g daily over nine months.[507]
Those are very reasonable starting percentages for your target calories. We can raise or lower your carbohydrate and fat numbers depending on your food preferences (i.e. if you’re more of a rice/potatoes guy… stick with 45% carbs; if you’re more of a bacon and eggs guy… lower your carbs to around 35% and bump your fat percentage to 30% total calories)
It’s perhaps best known for the aesthetic benefits. Creatine increases muscle size relatively quickly and while that’s in part due to an increase in muscle water content — a good thing, since it means we’re better hydrated — it does indeed appear to lead to actual hypertrophy over time. And bigger muscles aren’t just aesthetic: larger muscles can improve work capacity, explosiveness, fat oxidation, injury resilience, and recovery.
Although it does not appear to influence baseline antioxidant enzymes (measured in red blood cells), one week of creatine loading in otherwise healthy young adults has increased red blood cell (RBC) content of the superoxide dismutase (SOD) enzyme in response to a sprint test by 8.1% immediately after exercise. This was no longer detectable after an hour since placebo increased to match.[299] Glutathione and catalase are unaffected.[299]

Creatine citrate is creatine bound to citric acid, or citrate. Creatine citrate does not differ greatly from monohydrate in regard to absorption or kinetics.[83] Note that creatine citrate is more water-soluble than monohydrate,[84] but creatine absorption is generally not limited by solubility. The increased water solubility may play a factor in palatability.
If you're a beginner, just about any workout will be intense enough to increase protein synthesis. But if you've been lifting for a while, you'll build the most muscle quickest if you focus on the large muscle groups, like the chest, back, and legs. Add compound lifts like squats, deadlifts, pullups, bent-over rows, bench presses, dips, and military presses to your workout to work them the most efficiently.
After all, if you’re doing more reps in a set, the weight would obviously be lighter and the intensity level lower. If you’re doing fewer reps in a set, the weight is obviously heavier and the intensity is higher. In addition, how close you come to reaching failure – aka the point in a set when you are unable to complete a rep – also plays a role here.
Another double-blind study supplemented with 18.75 g/day of creatine monohydrate for 5 days prior to high-intensity intermittent work to exhaustion, and then 2.25 g/day during testing. The workouts consisted of cycling to exhaustion using several protocols: (a) nonstop, (b) 60 seconds work/120 seconds rest, (c) 20 seconds work/40 seconds rest, and (d) 10 seconds work/20 seconds rest. Creatine supplementation significantly increased the total work time for all four protocols [13].
Peirano, R. I., Achterberg, V., Dusing, H. J., Akhiani, M., Koop, U., Jaspers, S., Kruger, A., Schwengler, H., Hamann, T., Wenck, H., Stab, F., Gallinat, S., and Blatt, T. Dermal penetration of creatine from a face-care formulation containing creatine, guarana and glycerol is linked to effective antiwrinkle and antisagging efficacy in male subjects. J.Cosmet.Dermatol. 2011;10(4):273-281. View abstract.
There’s no need to go overboard on creatine intake, though, in search of crazy muscle growth: “The maximum amount of creatine that you can hold depends on the amount of muscle mass you have,” explains Bates. “So if you have more muscle, then your body can store more creatine. In general, the muscle can hold about 2 to 3 g of creatine per kilogram of muscle mass. So the amount of creatine you use will depend on the amount of muscle mass you have.” (7)

A: First, you have to realize that when one is gaining weight it’s nearly impossible (steroid discussion aside) to gain solely muscle without the acquisition of some body fat as well. That being said though, you can improve thedistribution of lean body mass to fat mass by ensuring that your calorie consumption isn’t too aggressive (i.e. 1000+ over your BMR). Also, it should go without saying, but you need to be training hard while focusing on progressive overload to ensure that the calories you’re ingesting are actually going towards muscle growth. You shouldn’t be neglecting cardiovascular work either; both HIIT and LISS each play a role in enhancing mitochondrial density, balancing neurotransmitters, improving oxidative capacity, and influencing brain plasticity.

Syndromes caused by problems metabolizing creatine. Some people have a disorder that prevents their body from making creatine. This can lead to low levels of creatine in the brain. Low levels of creatine in the brain can lead to decreased mental function, seizures, autism, and movement problems. Taking creating by mouth daily for up to 3 years can increase creatine levels in the brain in children and young adults with a disorder of creatine production called guanidinoacetate methyltransferase (GAMT) deficiency. This can help improve movement and reduce seizures. But it doesn't improve mental ability. Arginine-glycine amidinotransferase (AGAT) deficiency is another disorder that prevents the body from making creatine. In children with this condition, taking creatine for up to 8 years seems to improve attention, language, and mental performance. But taking creatine does not seem to improve brain creatine levels, movement, or mental function in children who have a disorder in which creatine isn't transported properly.
SAMe is the primary methyl donor in the human body, and supplements that preserve SAMe (such as trimethylglycine; TMG) promote a variety of benefits in the human body, like a reduction in homocysteine and reduced risk of fatty liver. Creatine has been implicated in both reducing homocysteine[124] and preventing fatty liver in rodents[125], thought to be secondary to preserving SAMe.
Fast twitch (or Type II fibers) fire very quickly, but also fatigue quickly, so they don’t last long.  It gets a bit more complicated, because there are actually two types of fast twitch fibers. Type IIA fibers have some endurance qualities (used for things such as longer sprints). While Type IIX fibers are our “super fast” fibers, used only when a super short burst is needed (like a 100 m sprint or a really heavy lift).

2-[carbamimidoyl(methyl)amino]acetic acid, Cr, Creatin, Creatina, Créatine, Créatine Anhydre, Creatine Anhydrous, Creatine Citrate, Créatine Citrate, Creatine Ethyl Ester, Créatine Ethyl Ester, Creatine Ethyl Ester HCl, Créatine Ethyl Ester HCl, Creatine Gluconate, Creatine Hydrochloride, Créatine Kré Alkaline, Creatine Malate, Créatine Malate, Creatine Monohydrate, Créatine Monohydrate, Créatine Monohydratée, Creatine Pyroglutamate, Créatine Pyroglutamate, Creatine Pyruvate, Créatine Pyruvate, Dicreatine Malate, Dicréatine Malate, Di-Creatine Malate, Éthyle Ester de Créatine, Glycine, Kreatin, Kre-Alkalyn Pyruvate, Malate de Tricréatine, N-(aminoiminométhyl)-N-Méthyl, N-(aminoiminomethyl)-N methyl glycine, N-amidinosarcosine, Phosphocreatine, Phosphocréatine, Tricreatine HCA, Tricréatine HCA, Tricreatine Malate, Tricréatine Malate.