Over time, we naturally lose muscle mass in a process called sarcopenia. On average, men lose about 30% of their muscle mass during their lives. Usually, this begins in your 30s and progresses slowly as you age. But, don’t despair. You can rebuild and maintain muscle mass even as you age. Often, diet and exercise are enough. But, sometimes, if the above hormones play a role, your doctor may recommend medications and additional treatments (4).
Creatine is most commonly used for improving exercise performance and increasing muscle mass in athletes and older adults. There is some science supporting the use of creatine in improving the athletic performance of young, healthy people during brief high-intensity activity such as sprinting. Because of this, creatine is often used as a dietary supplement to improve muscle strength and athletic performance. In the U.S., a majority of sports nutrition supplements, which total $2.7 billion in annual sales, contain creatine.

In vitro, creatine (0.125mM or higher) can reduce excitotoxicity from glutamate, which is thought to be secondary to preserving intracellular creatine phosphate levels.[209] Glutamate-induced excitotoxicity is caused by excessive intracellular calcium levels resulting from ATP depletion. Since high levels of calcium inside the cell are toxic, ATP preserves membrane integrity,[210] in part by promoting calcium homeostasis. When ATP is depleted, the sodium-potassium ATPase pump (Na+,K+-ATPase) stops working, leading to sodium accumulation in the cell. This reduces the activity of the sodium-calcium exchange pump, which, alongside a lack of ATP, reduces calcium efflux through the Na+,K+-ATPase. Thus, ATP depletion leads to intracellular calcium overload, loss of membrane potential, and excitotoxic cell death. Therefore, by helping preserve ATP levels, creatine is protective against excitotoxicity. This protective effect was noted after either creatine preloading or addition up to 2 hours after excitotoxicity.[209] Protection from glutamate-induced toxicity also extends to glial cells[211] and is additive with COX2 inhibition.[212]
Creatine has been investigated for its effects on depression, due to the significant changes occurring in brain morphology and neuronal structure associated with depression[246] and low brain bioenergetic turnover in depression[247], perhaps related to abnormal mitochondrial functioning, which reduces available energy for the brain.[248][249] The general association of low or otherwise impaired phosphate energy systems (of which creatine forms the energetic basis of) with depression, has been noted previously.[250][247][251] Due to associations with cellular death and impaired bioenergetics with depression, creatine was subsequently investigated.

^ Jump up to: a b c d Luckose F, Pandey MC, Radhakrishna K (2015). "Effects of amino acid derivatives on physical, mental, and physiological activities". Crit. Rev. Food Sci. Nutr. 55 (13): 1793–1807. doi:10.1080/10408398.2012.708368. PMID 24279396. HMB, a derivative of leucine, prevents muscle damage and increases muscle strength by reducing exercise-induced proteolysis in muscles and also helps in increasing lean body mass. ... The meta analysis studies and the individual studies conducted support the use of HMB as an effective aid to increase body strength, body composition, and to prevent muscle damage during resistance training.


Other human studies have yielded mixed results concerning creatine’s influence on triglyceride levels. In healthy male football players, creatine supplementation (5g monohydrate daily) over eight weeks did not influence triglyceride levels[324] but in martial artists given approximately 3.5g daily, a statistically significant increase in triglycerides was found despite no changes in total cholesterol.[325] In people with cardiovascular complications, given an exercise program and creatine, no significant change in triglycerides was noted relative to a placebo control group, which was also exercising.[326]
As Heath talked in the office, Cremona presented him with steak and white rice. It was takeout, from Outback Steakhouse, because the two had just returned from a weeklong trip. Heath reached toward a bouquet of round plastic jars filled with powdered supplements. He scooped powder from one into a water bottle, shook it and drank. He compared himself to a racecar, always in need of fuel and delicate tinkering.
Some of these medications that can harm the kidneys include cyclosporine (Neoral, Sandimmune); aminoglycosides including amikacin (Amikin), gentamicin (Garamycin, Gentak, others), and tobramycin (Nebcin, others); nonsteroidal anti-inflammatory drugs (NSAIDs) including ibuprofen (Advil, Motrin, Nuprin, others), indomethacin (Indocin), naproxen (Aleve, Anaprox, Naprelan, Naprosyn), piroxicam (Feldene); and numerous others.
It has been argued that purposely overtraining for a brief period can be beneficial. One article published by Muscle & Fitness magazine stated that you can "Overtrain for Big Gains". It suggested that if one is planning a restful holiday and does not wish to inhibit their bodybuilding lifestyle too much, they should overtrain before taking the holiday, so the body can recuperate and grow during the prolonged rest period. Overtraining can be used advantageously, as when a bodybuilder is purposely overtrained for a brief period of time to super compensate during a regeneration phase. These are known as "shock micro-cycles" and were a key training technique used by Soviet athletes.[53]

Change things up. After six or more weeks of consistent strength training, which is about the amount of time it takes to start seeing improvement in your body, you can change your routine to make it more difficult. Lifting the same weights for the same exercises every week will keep your body in the same place. You can modify weights or repetitions, choose different exercises, or change the order in which you do them. You only have to make one change at a time to make a difference, although more is often better. 
Stand on one foot with the arch and heel hanging off of the edge of a step or platform. Hold onto something if you need help balancing. Drop your heel all the way down below the step, and then rise all the way up on your toes. Hold dumbbells to make it harder. If you can balance without holding on to something, you’ll work your core muscles, too. You'll also build more stable joints in the other leg.
Creatine was first identified in 1832 when Michel Eugène Chevreul isolated it from the basified water-extract of skeletal muscle. He later named the crystallized precipitate after the Greek word for meat, κρέας (kreas). In 1928, creatine was shown to exist in equilibrium with creatinine.[3] Studies in the 1920s showed that consumption of large amounts of creatine did not result in its excretion. This result pointed to the ability of the body to store creatine, which in turn suggested its use as a dietary supplement.[4]

High extracellular creatine concentrations induce the expression of a factor that inhibits the creatine transporter (CrT). To date, neither the identity of nor mechanism for this putative CrT-suppressing factor has come to light. Future studies that are able to identify this creatine transport-suppressing factor and how it works may provide valuable insight into possible supplementation strategies that might be used to increase creatine uptake into muscle cells.
The first U.S. Women's National Physique Championship, promoted by Henry McGhee and held in Canton, Ohio in 1978, is generally regarded as the first true female bodybuilding contest—that is, the first contest where the entrants were judged solely on muscularity.[13] In 1980, the first Ms. Olympia (initially known as the "Miss" Olympia), the most prestigious contest for professionals, was held. The first winner was Rachel McLish, who had also won the NPC's USA Championship earlier in the year. The contest was a major turning point for female bodybuilding. McLish inspired many future competitors to start training and competing. In 1985, a movie called Pumping Iron II: The Women was released. It documented the preparation of several women for the 1983 Caesars Palace World Cup Championship. Competitors prominently featured in the film were Kris Alexander, Lori Bowen, Lydia Cheng, Carla Dunlap, Bev Francis, and McLish. At the time, Francis was actually a powerlifter, though she soon made a successful transition to bodybuilding, becoming one of the leading competitors of the late 1980s and early 1990s.
^ Jump up to: a b c d e f g h Momaya A, Fawal M, Estes R (April 2015). "Performance-enhancing substances in sports: a review of the literature". Sports Med. 45 (4): 517–531. doi:10.1007/s40279-015-0308-9. PMID 25663250. Wilson et al. [91] demonstrated that when non-resistance trained males received HMB pre-exercise, the rise of lactate dehydrogenase (LDH) levels reduced, and HMB tended to decrease soreness. Knitter et al. [92] showed a decrease in LDH and creatine phosphokinase (CPK), a byproduct of muscle breakdown, by HMB after a prolonged run. ... The utility of HMB does seem to be affected by timing of intake prior to workouts and dosage [97].
In regard to practical interventions, concurrent glycogen loading has been noted to increase creatine stores by 37-46% regardless of whether the tissue was exercised prior to loading phase.[176] It is important to note, however, that creatine levels in response to the creatine loading protocol were compared in one glycogen-depleted leg to the contralateral control leg, which was not exercised.[176] This does not rule out a possible systemic exercise-driven increase in creatine uptake, and the increase in creatine noted above[176] was larger than typically seen with a loading protocol (usually in the 20-25% range). Consistent with an exercise-effect, others have reported that exercise itself increases creatine uptake into muscle, reporting 68% greater creatine uptake in an exercised limb, relative to 14% without exercise.[153]
Studies conducted in vegetarians tend to show cognitive enhancement in youth, possibly due to a creatine deficiency, as compared to omnivores.[272][60][61] Vegetarian diets have lower levels of circulating creatine prior to supplementation, but attain similar circulating levels as omnivores when both groups supplement.[272][273] Building on the latter, supplementation of creatine monohydrate in a loading protocol (20g daily in orange juice) in omnivores does not alter levels of creatine in white matter tissue in the brain (test subjects: competitive athletes).[274] In most of the parameters that vegetarians experience benefits, omnivores fail to experience statistically significant benefits[275], except possibly when sleep deprived, where the cognitive improvements rival that seen in vegetarians.[276] Elderly people who are omnivorous may also experience increases in cognition to a similar level, in regard to long-term memory as well as forward number and spatial recall, although the study in question failed to find any significant benefit on backward recall or random number generation,[38] the latter of which is a test for executive working memory.[277]
Synthesis primarily takes place in the kidney and liver, with creatine then being transported to the muscles via the blood. The majority of the human body's total creatine and phosphocreatine stores is located in skeletal muscle, while the remainder is distributed in the blood, brain, and other tissues.[17][18][20] Typically, creatine is produced endogenously at an estimated rate of about 8.3 mmol or 1 gram per day in young adults.[16][17] Creatine is also obtained through the diet at a rate of about 1 gram per day from an omnivorous diet.[17][18] Some small studies suggest that total muscle creatine is significantly lower in vegetarians than non-vegetarians, as expected since foods of animal origin are the primary source of creatine. However, subjects happened to show the same levels after using supplements.[21]
×