The motor proteins actin and myosin generate the forces exerted by contracting muscles. Current recommendations suggest that bodybuilders should consume 25–30% of protein per total calorie intake to further their goal of maintaining and improving their body composition.[30] This is a widely debated topic, with many arguing that 1 gram of protein per pound of body weight per day is ideal, some suggesting that less is sufficient, while others recommending 1.5, 2, or more.[31] It is believed that protein needs to be consumed frequently throughout the day, especially during/after a workout, and before sleep.[32] There is also some debate concerning the best type of protein to take. Chicken, turkey, beef, pork, fish, eggs and dairy foods are high in protein, as are some nuts, seeds, beans, and lentils. Casein or whey are often used to supplement the diet with additional protein. Whey protein is the type of protein contained in many popular brands of protein supplements and is preferred by many bodybuilders because of its high Biological Value (BV) and quick absorption rates. Whey protein also has a bigger effect than casein on insulin levels, triggering about double the amount of insulin release.[33] That effect is somewhat overcome by combining casein and whey. Bodybuilders are usually thought to require protein with a higher BV than that of soy, which is additionally avoided due to its claimed estrogenic properties. Still, some nutrition experts believe that soy, flax seeds and many other plants that contain the weak estrogen-like compounds or phytoestrogens, can be used beneficially, as phytoestrogens compete with estrogens for receptor sites in the male body and can block its actions. This can also include some inhibition of pituitary functions while stimulating the P450 system (the system that eliminates hormones, drugs and metabolic waste product from the body) in the liver to more actively process and excrete excess estrogen.[34][35] Cortisol decreases amino acid uptake by muscle, and inhibits protein synthesis.[36]
The creatine transporter (CrT) is positively regulated by proteins known to be involved in sensing and responding to the cellular energy state, including the mammalian target of rapamycin (mTOR[158]). Upon activation, mTOR stimulates SGK1 and SGK3[159][160] to act upon PIKfyve[161] and subsequently PI(3,5)P2[162] to increase CrT activity.[161] Beyond mTOR, SGK1 also is stimulated by intracellular calcium[163] and a lack of oxygen (ischemia).[164] Because transient ischemia is associated with increased reactive oxygen species (ROS) production after blood flow is restored (reperfusion) it has been hypothesized that muscle contraction may increase creatine uptake through a similar ROS-mediated mechanism.[165]
Natalie Digate Muth, MD, MPH, RD, is the ACE senior consultant for healthcare solutions, a practicing pediatrician and registered dietitian. Recognized as a Certified Obesity Specialist, Natalie has written for more than 50 publications and, in 2012, published her first book, 'Eat Your Vegetables' and Other Mistakes Parents Make: Redefining How to Raise Healthy Eaters.

Creatine is not an essential nutrient[19] as it is naturally produced in the human body from the amino acids glycine and arginine, with an additional requirement for methionine to catalyze the transformation of guanidinoacetate to creatine. In the first step of the biosynthesis these two amino acids are combined by the enzyme arginine:glycine amidinotransferase (AGAT, EC:2.1.4.1) to form guanidinoacetate, which is then methylated by guanidinoacetate N-methyltransferase (GAMT, EC:2.1.1.2), using S-adenosyl methionine as the methyl donor. Creatine itself can be phosphorylated by creatine kinase to form phosphocreatine, which is used as an energy buffer in skeletal muscles and the brain.

Beginners are advised to build up slowly to a weight training program. Untrained individuals may have some muscles that are comparatively stronger than others; nevertheless, an injury can result if (in a particular exercise) the primary muscle is stronger than its stabilizing muscles. Building up slowly allows muscles time to develop appropriate strengths relative to each other. This can also help to minimize delayed onset muscle soreness. A sudden start to an intense program can cause significant muscular soreness. Unexercised muscles contain cross-linkages that are torn during intense exercise. A regimen of flexibility exercises should be implemented before weight training begins, to help avoid soft tissue pain and injuries.
Cornelissen, V. A., Defoor, J. G., Stevens, A., Schepers, D., Hespel, P., Decramer, M., Mortelmans, L., Dobbels, F., Vanhaecke, J., Fagard, R. H., and Vanhees, L. Effect of creatine supplementation as a potential adjuvant therapy to exercise training in cardiac patients: a randomized controlled trial. Clin.Rehabil. 2010;24(11):988-999. View abstract.
Creatine ethyl ester is more a pronutrient for creatinine rather than creatine,[74] and was originally created in an attempt to bypass the creatine transporter. It is currently being studied for its potential as a treatment for situations in which there is a lack of creatine transporters (alongside cyclocreatine as another possible example).[77] Its efficacy may rely on intravenous administration, however.
Yuri Elkaim is one of the world’s most trusted health and fitness experts. A former pro soccer player turned NYT bestselling author of The All-Day Energy Diet and The All-Day Fat Burning Diet, his clear, science-backed advice has transformed the lives of more than 500,000 men and women and he’s on a mission to help 100 million people by 2040. Read his inspiring story, “From Soccer to Bed to No Hair on My Head” that started it all.
Creatine supplementation at 300mg/kg for one week (loading with no maintenance) in youth subject to six repeated 35m sprints (10s rest, known as the Running-based Anaerobic Sprint Test or RAST) noted that the increased average and peak power output seen in creatine was not met with a reduction in fatigue, although there was an attenuation in inflammation from exercise (TNFα and CRP).[299]
Perform bent over rows to work your back. Stand with your feet shoulder-width apart, about 6 to 10 inches (15–25 cm) behind the barbell or two dumbbells. Bend slightly at the knees but keep your shins vertical. Bend forward at the waist with your spine and head straight. Lift the weight with an overhand grip up to your lower chest or upper abdomen. Lower slowly until your arms are nearly extended, without touching the ground. 3 x 8.[5]
A study using creatine at 0.02% of a face cream (confounded with 8% glycerol and 0.4% Guarana) was able to exert a skin-tightening effect over 6 weeks, reducing wrinkles and jowl volume.[541] Combination therapy has also been used with creatine and folic acid (both in vitro[543] and in vivo), resulting in increased skin firmness and reduced coarse and fine wrinkles.[544]
Most causes of brain injury (calcium influx, excitotoxicity, lipid peroxidation, reactive oxygen intermediates or ROIs) all tend to ultimately work secondary to damaging the mitochondrial membrane and reducing its potential, which ultimately causes cellular apoptosis.[258][259][260][261] Traumatic brain injuries are thought to work vicariously through ROIs by depleting ATP concentrations.[262][263] Creatine appears to preserve mitochondrial membrane permeability in response to traumatic brain injury (1% of the rat’s diet for four weeks),[264] which is a mechanism commonly attributed to its ATP-buffering ability.

At the same time, this also doesn’t mean that primary compound exercises can never be done for more than 8 reps, or that secondary compound exercise can’t be done for 5-8 or 10-15 reps, or that isolation exercises can’t be done for less than 10 reps. Everything can be done in every rep range. However, these are the rep ranges that each type of exercise is best suited for, and where it should ideally be done most of the time.


When endothelial cells have a higher creatine concentration, they appear to be mildly less permeable when incubated with 0.5-5mM creatine, while the higher concentration (5mM) is able to fully ablate TNF-α-induced neutrophil adhesion and both E-selectin and ICAM-1 expression.[316] This effect was prevented with ZM241385, an A2A (adenosine) receptor antagonist,[316] and since adenosine released by this receptor is known to be protective of endothelial cells,[317][318] it is thought that creatine works vicariously through this receptor and adenosine release, thought to be due to releasing ATP (occurs in response to stress[319][320]) which protects the cell via the A2A signaling system.[316]

Entry into neural tissues in general is mediated by the secondary creatine transporter (CrT-2) known as SLC6A10,[186] which is the same transporter that is active in a male’s testicles.[145] CrT-2 belongs to the family of SLC6 transporters that act to move solutes across the membrane by coupling transport with sodium and chloride.[187][188] Genetic deletions in the 16p11.2 region, which encodes both SLC6A8[189] and SLC6A10[186] can result in severe mental retardation in humans and is one of the causes of “Creatine Deficiency Syndrome.” Creatine Deficiency Syndrome is not only caused by lack creatine transporter expression, however, as creatine synthesis is also critical for neural function.[190].[189] Retardation caused by defective creatine synthesis[31] can be reversed with creatine supplementation and dietary changes.[191]
Secure a flat resistance band just above your ankles and stand with your feet at about hip width, keeping feet forward. Keeping your weight in your heels, step your right foot laterally, maintaining the tension in the band. Keep the band taut as you step your left foot slightly to the right. Continue stepping sideways to your right for about 5 steps. Then step to your left to return to the starting position. Repeat three times.
Without a doubt, you can add muscle simply by eating right and lifting weights. But to truly maximize your growth potential, supplements are a requirement. Hence, we've compiled a rundown of the 11 best mass-gain supplements on which to spend your hard-earned cash. They're listed in order of priority, from the absolute most critical, can't-do-without supplements to the less crucial yet still highly effective ingredients for packing on size. The point is to help those on a tight budget decide which supplements to buy. If money is no object, then by all means knock yourself out and use them all as directed. Because after all, as far as we're concerned, you can never have too much muscle.
The glutes, what most people think of as the “butt muscles,” are located behind the pelvis region, attaching to fascia tissue of the lumbar region (the lower back). (3) They sit below the gluteus medius (the top of the buttocks) and above the biceps femoris (the muscles in the back of the thighs). They also connect to the sacrum, sacrotuberous ligament and coccyx bones (the tailbone).
Progain contains an easily digested source of carbohydrate, providing much needed carbohydrate to fuel your workout before or after. By adding creatine to your diet, in a shake, in food or in capsules, is proven to increase strength, build muscle size and support training intensity. At Maximuscle we have a number of products with added creatine, such as: Creatine Monohydrate, Creatamax Capsules, Cyclone (powder & bars), Progain Flapjack.
A testicular action was linked to circulating blood fractions – now understood to be a family of androgenic hormones – in the early work on castration and testicular transplantation in fowl by Arnold Adolph Berthold (1803–1861).[182] Research on the action of testosterone received a brief boost in 1889, when the Harvard professor Charles-Édouard Brown-Séquard (1817–1894), then in Paris, self-injected subcutaneously a "rejuvenating elixir" consisting of an extract of dog and guinea pig testicle. He reported in The Lancet that his vigor and feeling of well-being were markedly restored but the effects were transient,[183] and Brown-Séquard's hopes for the compound were dashed. Suffering the ridicule of his colleagues, he abandoned his work on the mechanisms and effects of androgens in human beings.
The synthesis of creatine (from guanidinoacetate via GAMT) also requires SAMe as a cofactor and is implicated in homocysteine production. While supplementation of guanidinoacetate at 0.36% (prior to SAMe) can increase homocysteine by up to 50% in rats, supplementation of creatine (0.4%) is able to suppress homocysteine by up to 25%, secondary to reducing creatine synthesis,[309] and has been replicated elsewhere with 2% of the rat diet, while a loading phase did not alter the benefits.[124]

Miscellaneous: Sleep: (REM sleep) increases nocturnal testosterone levels.[146] Behavior: Dominance challenges can, in some cases, stimulate increased testosterone release in men.[147] Drugs: Natural or man-made antiandrogens including spearmint tea reduce testosterone levels.[148][149][150] Licorice can decrease the production of testosterone and this effect is greater in females.[151]
It was traditionally thought that total brain blood flow was not changed during physical activity. Research in the last 10 years, however, changed this perspective. We now understand that the increased neuronal and metabolic activity of the brain during exercise drive increases in blood flow to it. We have also learned that exercise that is too intense will reduce blood flow and oxygen delivery causing fatigue. So, what is the ideal intensity to stimulate blood flow to the brain, and perhaps, augment your mental abilities in the moment?
The neuroprotective effects of creatine appear to exist in regard to dopamine biosynthesis, and the suppression of dopamine synthesis seen with some neurological toxins appears to be partially attenuated with dietary intake of creatine. The protective effect is weak to moderate in animal research, but appears to be additive with anti-inflammatories.
This cellular influx may also decrease protein oxidation rates, which leads to increases in nitrogen balance and indirectly increases muscle mass.[379] This lowering of protein oxidation is from signaling changes caused vicariously through cell swelling[380][381] and appears to upregulate 216 genes[378] in a range of 1.3 to 5-fold increases, with the largest increase seen in the protein involved in satellite cell recruitment, sphingosine kinase-1. Most importantly for muscle hypertrophy, the protein content of PKBa/Akt1, p38 MAPK, and ERK6 increased 2.8+/-1.2 fold.[378] Sixty-nine genes are also downregulated after creatine supplementation, to less notable degrees.

Testosterone does a lot more than you’d think, whether we’re talking about male or female biology. It’s the hormone that helps you burn fat, build muscle [1], and increase your sex drive [2], and its power doesn’t stop there. Keeping your testosterone levels in a normal range can make you happier, too [3], and testosterone can even improve your cardiovascular health and decrease your risk of mortality (from all causes!), according to a study of 83,000 older men who underwent testosterone replacement therapy [4].
In contrast to strongman or powerlifting competitions, where physical strength is paramount, or to Olympic weightlifting, where the main point is equally split between strength and technique, bodybuilding competitions typically emphasize condition, size, and symmetry. Different organizations emphasize particular aspects of competition, and sometimes have different categories in which to compete.
After the ingestion of 5g creatine in otherwise healthy humans, serum levels of creatine were elevated from fasting levels (50-100µM) to 600-800µM within one hour after consumption.[135] The receptor follows Michaelis-Menten kinetics with a Vmax obtained at concentrations higher than 0.3-0.4mmol/L,[136] with prolonged serum concentrations above this amount exerting most of its saturation within two days.[137]
Cooke et al [41] observed positive effects of a prior (0.3 g/d kg BW) loading and a post maintenance protocol (0.1 g/d kg BW) to attenuate the loss of strength and muscle damage after an acute supramaximal (3 set x 10 rep with 120% 1RM) eccentric resistance training session in young males. The authors speculate that creatine ingestion prior to exercise may enhance calcium buffering capacity of the muscle and reduce calcium-activated proteases which in turn minimize sarcolemma and further influxes of calcium into the muscle. In addition creatine ingestion post exercise would enhance regenerative responses, favoring a more anabolic environment to avoid severe muscle damage and improve the recovery process. In addition, in vitro studies have demonstrated the antioxidant effects of creatine to remove superoxide anion radicals and peroxinitrite radicals [42]. This antioxidant effect of creatine has been associated with the presence of Arginine in its molecule. Arginine is also a substrate for nitric oxide synthesis and can increase the production of nitric oxide which has higher vasodilatation properties, and acts as a free radical that modulates metabolism, contractibility and glucose uptake in skeletal muscle. Other amino acids contained in the creatine molecule such as glycine and methinine may be especially susceptible to free radical oxidation because of sulfhydryl groups [42]. A more recent in vitro study showed that creatine exerts direct antioxidant activity via a scavenging mechanism in oxidatively injured cultured mammalian cells [43]. In a recent in vivo study Rhaini et al [44] showed a positive effect of 7 days of creatine supplementation (4 x 5 g CM 20 g total) on 27 recreational resistance trained males to attenuate the oxidation of DNA and lipid peroxidation after a strenuous resistance training protocol.
Men appear to have higher active creatine-kinase systems, and racial differences favor black people over hispanic people over white people in terms of the activity of the creatine-kinase system. This system is more variable in men, independent of supplementation. Exercise may increase the activity of the creatine-kinase system independent of supplementation.
While there are many reasons why an individual might have weak glute muscles, one of the main causes is that many of us are living increasingly sedentary lifestyles. Many jobs now involve people sitting down for a big part of their day, or after a long day of work we go home and sit on the couch; this means that the gluteus muscles can become dormant more than they should be. Another reason why someone might have weak glutes could be because of poor form and generally over-relying on other muscles during everyday movements, which contributes further to the muscles remaining inactive. 
How long and how often? Two or three weekly 20- to 30-minute, weight-training sessions are sufficient to start reaping noticeable benefits within four to 12 weeks, such as improved energy and muscle tone. Within six months, most people increase their strength 40 percent or more. Give your body at least one recovery day between sessions (although some people may need more, especially in the beginning).
Injections of creatine are known to be neuroprotective against low oxygen levels (hypoxia) even to neonatal rats.[532] This is thought to be associated with the increased collective pool of phosphocreatine and creatine.[236] Since oral ingestion of creatine by the mother increases brain concentrations of creatine by 3.6% in the fetus prior to birth,[531] it is thought to be protective in the fetuses subject to hypoxic (low oxygen) stressors, such as a caesarean section.
For people who are worried about low or high testosterone, a doctor may perform a blood test to measure the amount of the hormone in the patient's blood. When doctors find low-T, they may prescribe testosterone therapy, in which the patient takes an artificial version of the hormone. This is available in the following forms: a gel to be applied to the upper arms, shoulders or abdomen daily; a skin patch put on the body or scrotum twice a day; a solution applied to the armpit; injections every two or three weeks; a patch put on the gums twice a day; or implants that last four to six months.
Side-Effects: While the signs of a great body may make one think that there cannot be anything wrong with bodybuilding supplements, the facts speak otherwise. Bodybuilding supplements do have side-effects and you must listen to your trainer before giving in to the thoughts of buying one. Creatine can cause heart problems, kidney problems, dehydration, diarrhoea and muscle cramping. You must also discuss your medical history with the trainer. 
The bones and the brain are two important tissues in humans where the primary effect of testosterone is by way of aromatization to estradiol. In the bones, estradiol accelerates ossification of cartilage into bone, leading to closure of the epiphyses and conclusion of growth. In the central nervous system, testosterone is aromatized to estradiol. Estradiol rather than testosterone serves as the most important feedback signal to the hypothalamus (especially affecting LH secretion).[119] In many mammals, prenatal or perinatal "masculinization" of the sexually dimorphic areas of the brain by estradiol derived from testosterone programs later male sexual behavior.[120]
If you'’re looking to add muscle mass to your frame, hitting the weights hard is a given. Quality time in the gym begins a cascade of changes that will stimulate your muscles to grow bigger in response to the challenges you throw their way. It'’s tempting to think that'’s all it takes to add muscle to your body. After all, you can actually feel your biceps growing after an intense set of curls.
Weight training aims to build muscle by prompting two different types of hypertrophy: sarcoplasmic and myofibrillar. Sarcoplasmic hypertrophy leads to larger muscles and so is favored by bodybuilders more than myofibrillar hypertrophy, which builds athletic strength. Sarcoplasmic hypertrophy is triggered by increasing repetitions, whereas myofibrillar hypertrophy is triggered by lifting heavier weight.[23] In either case, there is an increase in both size and strength of the muscles (compared to what happens if that same individual does not lift weights at all), however, the emphasis is different.
Creatine has demonstrated neuromuscular performance enhancing properties on short duration, predominantly anaerobic, intermittent exercises. Bazzucch et al [27] observed enhanced neuromuscular function of the elbow flexors in both electrically induced and voluntary contractions but not on endurance performance after 4 loading doses of 5 g creatine plus 15 g maltodextrin for 5/d in young, moderately trained men. Creatine supplementation may facilitate the reuptake of Ca2+ into the sacroplasmic reticulum by the action of the Ca2+ adenosine triphosphatase pump, which could enable force to be produced more rapidly through the faster detachment of the actomyosin bridges.

Researchers found that 5g of creatine four times daily for a week (loading) before sleep deprivation for 12-36 hours was able to preserve cognition during complex tasks of executive function at 36 hours only, without significant influence on immediate recall or mood.[279] A similar protocol replicated the failure to improve memory and attention, but noted less reports of fatigue (24 hours) and less decline of vigor (24 hours) although other mood parameters were not measured.[276]
Total levels of testosterone in the body are 264 to 916 ng/dL in men age 19 to 39 years,[169] while mean testosterone levels in adult men have been reported as 630 ng/dL.[170] Levels of testosterone in men decline with age.[169] In women, mean levels of total testosterone have been reported to be 32.6 ng/dL.[171][172] In women with hyperandrogenism, mean levels of total testosterone have been reported to be 62.1 ng/dL.[171][172]

Syrotuik and Bell [57] investigated the physical characteristics of responder and non-responder subjects to creatine supplementation in recreationally resistance trained men with no history of CM usage. The supplement group was asked to ingest a loading dosage of 0.3 g/kg/d for 5 days. The physiological characteristics of responders were classified using Greenhaff et al [58] criterion of >20 mmol/kg dry weight increase in total intramuscular creatine and phosphocreatine and non responders as <10 mmol/kg dry weight increase, a third group labeled quasi responders were also used to classify participants who fell in between the previously mentioned groups (10-20 mmol/kg dry weight). Overall, the supplemented group showed a mean increase in total resting muscle creatine and phosphocreatine of 14.5% (from 111.12 ± 8.87 mmol/kg dry weight to 127.30 ± 9.69 mmol/kg dry weight) whilst the placebo group remained relatively unaffected (from 115.70 ± 14.99 mmol/kg dry weight to 111.74 ± 12.95 mmol/kg dry weight). However when looking at individual cases from the creatine group the results showed a variance in response. From the 11 males in the supplemented group, 3 participants were responders (mean increase of 29.5 mmol/kg dry weight or 27%), 5 quasi responders (mean increase of 14.9 mmol/kg dry weight or 13.6%) and 3 non-responders (mean increase of 5.1 mmol/kg dry weight or 4.8%). Using muscle biopsies of the vastus lateralis, a descending trend for groups and mean percentage fiber type was observed. Responders showed the greatest percentage of type II fibers followed by quasi responders and non-responders. The responder and quasi responder groups had an initial larger cross sectional area for type I, type IIa and type IIx fibers. The responder group also had the greatest mean increase in the cross sectional area of all the muscle fiber types measured (type I, type IIa and type IIx increased 320, 971 and 840 μm2 respectively) and non-responders the least (type I, type IIa and type IIx increased 60, 46 and 78 μm2 respectively). There was evidence of a descending trend for responders to have the highest percentage of type II fibers; furthermore, responders and quasi responders possessed the largest initial cross sectional area of type I, IIa and IIx fibers. Responders were seen to have the lowest initial levels of creatine and phosphocreatine. This has also been observed in a previous study [17] which found that subjects whose creatine levels were around 150 mmol/Kg dry mass did not have any increments in their creatine saturation due to creatine supplementation, neither did they experience any increases of creatine uptake, phosphocreatine resynthesis and performance. This would indicate a limit maximum size of the creatine pool.


Entry into neural tissues in general is mediated by the secondary creatine transporter (CrT-2) known as SLC6A10,[186] which is the same transporter that is active in a male’s testicles.[145] CrT-2 belongs to the family of SLC6 transporters that act to move solutes across the membrane by coupling transport with sodium and chloride.[187][188] Genetic deletions in the 16p11.2 region, which encodes both SLC6A8[189] and SLC6A10[186] can result in severe mental retardation in humans and is one of the causes of “Creatine Deficiency Syndrome.” Creatine Deficiency Syndrome is not only caused by lack creatine transporter expression, however, as creatine synthesis is also critical for neural function.[190].[189] Retardation caused by defective creatine synthesis[31] can be reversed with creatine supplementation and dietary changes.[191] 

Polyethylene glycol is a non-toxic, water-soluble polymer that is capable of enhancing the absorption of creatine and various other substances [66]. Polyethylene glycol can be bound with CM to form polyethylene glycosylated creatine. One study [67] found that 5 g/d for 28 days of polyethylene glycosylated creatine was capable of increasing 1RM bench press in 22 untrained young men but not for lower body strength or muscular power. Body weight also did not significantly change in the creatine group which may be of particular interest to athletes in weight categories that require upper body strength. Herda et al [68] analyzed the effects of 5 g of CM and two smaller doses of polyethylene glycosylated creatine (containing 1.25 g and 2.5 g of creatine) administered over 30 days on muscular strength, endurance, and power output in fifty-eight healthy men. CM produced a significantly greater improvement in mean power and body weight meanwhile both CM and polyethylene glycosylated form showed a significantly (p < 0.05) greater improvement for strength when compared with control group. These strength increases were similar even though the dose of creatine in the polyethylene glycosylated creatine groups was up to 75% less than that of CM. These results seem to indicate that the addition of polyethylene glycol could increase the absorption efficiency of creatine but further research is needed before a definitive recommendation can be reached.
Sound complicated? Fortunately, there's an easy rule of thumb for increasing your training volume: For each exercise, perform three to six sets of six to 12 reps, resting for 30 to 90 seconds between each set, she says. The weight used should be enough that you can get out your last reps with proper form but wouldn't be able to perform any additional reps.
Contrary to the sound of the name, glucosamine is not a glucose replacement drink but a naturally occurring compound that has received publicity and wide support as a supplement for the relief of arthritis pain and possible prevention of further joint damage. Glucosamine has been popular with sports people of all types, including weight trainers, particularly for knee arthritis and pain. Glucosamine seems to be safe to use.

Nephrectomized rats may have significantly reduced creatine synthesis rates[509] via impairment of methylation (the GAMT enzyme)[510] although creatine reuptake from the urine seems unimpaired.[511] Supplemental creatine in a rat model of 2/3rds nephrectomy (2% creatine in the diet) does not appear to negatively influence kidney function as assessed by the serum biomarkers of cystatin C and urinary protein or creatinine clearance rates.[512] Elsewhere, 2% creatine in the diet in rats for two weeks again failed to show negative effects on kidney function, but showed benefit in reducing homocysteine in late-stage uremic rats.[312] While there is not much human evidence for the rat nephrectomy model, a lone case study in a man with a single kidney failed to find an impairing effect of creatine (20g daily for five days and 5g for another month) in conjunction with a high protein diet.[513]
Abnormally high levels of testosterone could be the result of an adrenal gland disorder, or even cancer of the testes. High levels may also occur in less serious conditions. Congenital adrenal hyperplasia, which can affect males and females, is a rare but natural cause for elevated testosterone production. Your doctor may order other tests if your levels are exceedingly high.
What you eat plays a big role in how much muscle your body can build. Proteins are especially important for building muscle. When you eat protein, your body breaks it down into amino acids which are the building blocks of muscle. How much protein you should include in your diet depends on a number of factors including your age and muscle building goals. Older adults who engage in resistance training and those hoping for maximum muscle growth should eat 1 to 1.3 grams of protein per kg of body weight (2, 3). If you weigh 150 lbs, that means you should take between 68 and 88 g of protein daily. Other recommendations are more modest, suggesting that .36 grams of protein per pound of body weight is enough.

Previous investigations have shown that a single dose of CM (8 grams) increased the number of repetitions performed during an upper-body resistance training protocol and reduced soreness at 24 and 48 hours post-exercise (compared to a placebo).7 Recently, researchers from Mississippi State University found that a single dose of CM (8 grams) significantly increased the number of lower-body repetitions compared to a placebo group.[8]
You're aiming to kick start muscle hypertrophy, the cellular process that spurs growth. Researchers have found that the best way to initiate that process is by performing two or three sets of an exercise for six to 12 repetitions, with about 30 to 60 seconds' rest between sets. You're damaging the muscles with the work — then the protein you've been consuming will help build them back up even bigger.

It can be hard to know where to start when beginning strength training. There are countless exercises you can do, some of which work some muscles, but not others. There are safety concerns to beware of, a wide variety of sometimes confusing equipment to help you in your efforts, and so on. With some familiarity of the basics of getting started with strength training, actually doing so can become far less daunting, and you can begin to craft a routine that is targeted toward helping you achieve your personal goals.
Mercimek-Mahmutoglu, S., Stoeckler-Ipsiroglu, S., Adami, A., Appleton, R., Araujo, H. C., Duran, M., Ensenauer, R., Fernandez-Alvarez, E., Garcia, P., Grolik, C., Item, C. B., Leuzzi, V., Marquardt, I., Muhl, A., Saelke-Kellermann, R. A., Salomons, G. S., Schulze, A., Surtees, R., van der Knaap, M. S., Vasconcelos, R., Verhoeven, N. M., Vilarinho, L., Wilichowski, E., and Jakobs, C. GAMT deficiency: features, treatment, and outcome in an inborn error of creatine synthesis. Neurology 8-8-2006;67(3):480-484. View abstract.
Creatine supplementation at 300mg/kg for one week (loading with no maintenance) in youth subject to six repeated 35m sprints (10s rest, known as the Running-based Anaerobic Sprint Test or RAST) noted that the increased average and peak power output seen in creatine was not met with a reduction in fatigue, although there was an attenuation in inflammation from exercise (TNFα and CRP).[299]

^ Haykowsky MJ, Liang Y, Pechter D, Jones LW, McAlister FA, Clark AM (June 2007). "A meta-analysis of the effect of exercise training on left ventricular remodeling in heart failure patients: the benefit depends on the type of training performed". Journal of the American College of Cardiology. 49 (24): 2329–36. doi:10.1016/j.jacc.2007.02.055. PMID 17572248.
Deldicque et al [32] found a 250%, 45% and 70% increase for collagen mRNA, glucose transporter 4 (GLUT4) and Myosin heavy chain IIA, respectively after 5 days creatine loading protocol (21 g/d). The authors speculated that creatine in addition to a single bout of resistance training can favor an anabolic environment by inducing changes in gene expression after only 5 days of supplementation.

Energy: Energy is found in amino acids, also known as creatine, produced naturally in the body and also found in meat such as beef, chicken and pork. The problem with naturally found creatine is that the amount of protein in it is not high, which therefore, draws bodybuilders to supplement it with a powdered version. Bodybuilders use creatine to increase anaerobic energy; this allows them to lift weights for longer periods of time. Creatine also helps to give volume to the muscle cells by adding more water in them, thus making them look fuller. 
Why less volume for the smaller muscle groups, you ask? Partially because they are smaller, but mostly because they get a ton of indirect volume while training the bigger muscle groups (e.g. your biceps get hit pretty hard while training back, triceps get hit pretty hard while training chest and shoulders, shoulders get hit pretty hard while training chest, etc.).
What you eat, how you exercise, the amount of sleep you get, and what you supplement all play a role in building muscle. Just keep in mind, supplements are nowhere near as important as diet, exercise, and sleep. Those three are your foundation. Without supplements, you’ll still build plenty of muscle, assuming your exercise routine is consistent, your diet is healthy and contains enough protein, and you get enough quality sleep. Supplements are just the icing on the cake. They’ll help you push yourself a little harder.
Another common reason I see glutes that aren’t working properly is due to injury. Often an injury happens that changes the mechanics and motor programming of a person’s body. This can lead to some muscle groups becoming overactive, while others become underactive (think: compensation). This can alter things for a long time without the person even knowing it. 
This increased permeability is noted in glioma cells, where it exerts anti-cancer effects related to cell swelling,[99][100] and in other membranes, such as breast cancer cells[101] and skeletal (contractile) muscle cells.[102] The kinetics of cyclocreatine appear to be first-order,[101] with a relative Vmax of 90, Km of 25mM and a KD of 1.2mM.[103]
Once training is resumed under these conditions, there may be little in the way of caloric support to ensure that protein synthesis and muscle growth occurs. Muscle may even begin to cannibalize itself as the body enters into a catabolic state. Even with the best of diets this can sometimes happen if training demands override the nutritional balance or imbalance.

Using a block or some type of bench placed in front of you, place one foot forward with the knee bent. Try make sure your chest is upright and your front knee is right over your ankle once bent. Lean forward and step off your front leg, bending your back leg and bringing it near your stomach, or keeping it straight and trying not to use it for thrust. Step back in the same direction and repeat. If you’d like to hold a weight in your hands near your hips as you step, keep them swinging downward to add resistance.


A child’s ability to regenerate high energy phosphates during high intensity exercise is less than that of an adult. Due to this, creatine supplementation may benefit the rate and use of creatine phosphate and ATP rephosporylation. However, performance in short duration high-intensity exercise can be improved through training therefore supplementation may not be necessary [54].
Creatine supplementation at 300mg/kg for one week (loading with no maintenance) in youth subject to six repeated 35m sprints (10s rest, known as the Running-based Anaerobic Sprint Test or RAST) noted that the increased average and peak power output seen in creatine was not met with a reduction in fatigue, although there was an attenuation in inflammation from exercise (TNFα and CRP).[299]

It may also become a treatment for anemia, bone density and strength problems. In a 2017 study published in the journal of the American Medical Association (JAMA), testosterone treatments corrected anemia in older men with low testosterone levels better than a placebo. Another 2017 study published in JAMA found that older men with low testosterone had increased bone strength and density after treatment when compared with a placebo. 


Men who watch a sexually explicit movie have an average increase of 35% in testosterone, peaking at 60–90 minutes after the end of the film, but no increase is seen in men who watch sexually neutral films.[43] Men who watch sexually explicit films also report increased motivation, competitiveness, and decreased exhaustion.[44] A link has also been found between relaxation following sexual arousal and testosterone levels.[45]

Young adult athletes who reported creatine usage for over two years prior to the study (retrospective design) were not significantly different than controls.[501] Elsewhere, in a similar cohort of athletes reporting creatine usage for up to four years, failed to note significant differences in liver enzymes, although a nonsignificant reduction in LDH was noted.[502]

As the name implies, the muscle power objective can be pursued if you want to achieve maximum size in your muscles or if you want them to be explosively strong (i.e. very powerful for short bursts at a time). In order to develop muscles this way you'll want to use no more than 3 sets in which no more than 8 reps are used. Muscle size and power is often used for muscles that are prominently displayed on the human figure, such as the pectorals, or the biceps and triceps.
×