A typical creatine supplementation protocol of either a loading phase of 20 to 25 g CM/d or 0.3 g CM/kg/d split into 4 to 5 daily intakes of 5 g each have been recommended to quickly saturate creatine stores in the skeletal muscle. However a more moderate protocol where several smaller doses of creatine are ingested along the day (20 intakes of 1 g every 30 min) could be a better approach to get a maximal saturation of the intramuscular creatine store. In order to keep the maximal saturation of body creatine, the loading phase must be followed by a maintenance period of 3-5 g CM/d or 0.03 g CM/kg/d. These strategies appear to be the most efficient way of saturating the muscles and benefitting from CM supplementation. However more recent research has shown CM supplementation at doses of 0.1 g/kg body weight combined with resistance training improves training adaptations at a cellular and sub-cellular level. Creatine retention by the body from supplementation appears to be promoted by about 25% from the simultaneous ingestion of carbohydrate and/or protein mediated through an increase in insulin secretion. This combination would produce a faster saturation rate but has not been shown to have a greater effect on performance.

^ Jump up to: a b c d Brosnan ME, Brosnan JT (August 2016). "The role of dietary creatine". Amino Acids. 48 (8): 1785–91. doi:10.1007/s00726-016-2188-1. PMID 26874700. The daily requirement of a 70-kg male for creatine is about 2 g; up to half of this may be obtained from a typical omnivorous diet, with the remainder being synthesized in the body ... More than 90% of the body’s creatine and phosphocreatine is present in muscle (Brosnan and Brosnan 2007), with some of the remainder being found in the brain (Braissant et al. 2011). ... Creatine synthesized in liver must be secreted into the bloodstream by an unknown mechanism (Da Silva et al. 2014a)
This basic form of creatine comes in two forms, one of which involves the removal of the monohydrate (which results in creatine anhydrous) that converts to creatine monohydrate in an aqueous environment,[66][67] but due to the exclusion of the monohydrate it is 100% creatine by weight despite creatine monohydrate being 88% creatine by weight, as the monohydrate is 12%. This allows more creatine to be present in a concentrated formula, like capsules.[68]
One study in elite swimmers subject to sprints (varying in length from 25-100m) failed to find benefit with creatine supplementation, although there was also a failure on leg extension strength, suggesting nonresponse.[399] This has been noted twice elsewhere with a similar protocol,[400][401] while one study in elite swimmers subject to single 50m or 100m sprints found benefit with supplementation[402] and one found benefit with six repeated 50m sprints by 2%, yet not ten repeated 25m sprints with elite male swimmers (females failed to find benefit).[403] Another study also noted benefits in elite swimmers on a sprinting protocol.[156] Overall, the evidence is quite limited and suggests either a mild, or more likely, no increase for elite swimmers, although one study confirming an increase in body and water weight[401] failed to find a decrement in performance.
Contrary to certain rumors that animal-based protein is more suitable to trigger muscle growth than plant-based protein, a study by Mangano et al. (2017) could not provide any evidence for this. In contrast, if combined properly, plant-based protein can even have a higher biological quality. A combination of one part wheat protein (e.g. seitan) and two parts soy protein (e.g. tofu) has thus been favored by many bodybuilders. Some bodybuilders, such as Patrik Baboumian and Robert Cheeke, follow a strict vegan diet.[37]

Jager et al [60] observed 1.17 and 1.29 greater peak plasma creatine concentration 1 hour after ingesting creatine pyruvate compared to isomolar amount of CM and creatine citrate respectively. However time to peak concentration, and velocity constants of absorption and elimination, was the same for all three forms of creatine. Although not measured in this study it is questionable that these small differences in plasma creatine concentrations would have any effect on the increase of muscle creatine uptake. Jäger et al [61] investigated the effects of 28-days of creatine pyruvate and citrate supplementation on endurance capacity and power measured during an intermittent handgrip (15 s effort per 45s rest) exercise in healthy young athletes. The authors used a daily dose protocol with the intention to slowly saturate muscle creatine stores. Both forms of creatine showed slightly different effects on plasma creatine absorption and kinetics. The two creatine salts significantly increased mean power but only pyruvate forms showed significant effects for increasing force and attenuating fatigability during all intervals. These effects can be attributed to an enhanced contraction and relaxation velocity as well as a higher blood flow and muscle oxygen uptake. On the other hand, the power performance measured with the citrate forms decreases with time and improvements were not significant during the later intervals. In spite of these positive trends further research is required about the effects of these forms of creatine as there is little or no evidence for their safety and efficacy. Furthermore the regularity status of the novel forms of creatine vary from country to country and are often found to be unclear when compared to that of CM [62].

What you eat plays a big role in how much muscle your body can build. Proteins are especially important for building muscle. When you eat protein, your body breaks it down into amino acids which are the building blocks of muscle. How much protein you should include in your diet depends on a number of factors including your age and muscle building goals. Older adults who engage in resistance training and those hoping for maximum muscle growth should eat 1 to 1.3 grams of protein per kg of body weight (2, 3). If you weigh 150 lbs, that means you should take between 68 and 88 g of protein daily. Other recommendations are more modest, suggesting that .36 grams of protein per pound of body weight is enough.


The first thing you need is a weight training program that signals the muscle building process to begin. Research has shown that a well designed program will generate this “signal” via a combination of progressive tension overload (as in, getting stronger over time), metabolic stress (as in, fatiguing the muscle and getting “the pump”), and muscular damage (as in, actual damage to the muscle tissue itself).
There are a number of risk factors for depression including genetics, conflict, life events, death or loss, and other psychological problems. However, studies have added low testosterone as a major risk factor for depression, particularly in men. In fact, several studies have revealed that low testosterone is a common cause of depression in persons who do not respond to traditional medications. A robust amount of testosterone in the body promotes good mood, confidence, and a strong libido in a man.
Gains will differ from one individual to another depending on body size and level of experience in the gym. To make sure you'’re gaining muscle, not fat, don'’t just consider your scale weight. Instead, rely on what you see in the mirror and use a tape measure twice a month to keep track of your waist and hips (you don't want to gain there)— as well as your biceps, chest and quads. Also, don'’t think that you have to gain a set amount of weight each and every week. "Your mass gain doesn'’t have to be uniform,"” Aceto explains. That means you can gain 1/2 pound one week and 1 1/2 the next, perhaps none the third week and still remain on course. "“Expecting uniform gains ignores the intricate makeup of the body and the way it gains mass -— or loses fat - which is by no means in linear fashion," adds Aceto.
When testosterone and endorphins in ejaculated semen meet the cervical wall after sexual intercourse, females receive a spike in testosterone, endorphin, and oxytocin levels, and males after orgasm during copulation experience an increase in endorphins and a marked increase in oxytocin levels. This adds to the hospitable physiological environment in the female internal reproductive tract for conceiving, and later for nurturing the conceptus in the pre-embryonic stages, and stimulates feelings of love, desire, and paternal care in the male (this is the only time male oxytocin levels rival a female's).[citation needed]
It may seem odd to put such a common supplement as minerals on this list, but few people are aware that minerals are enzyme activators. Many vitamins, on the other hand, are coenzymes, which means that without minerals they're useless. Many minerals, such as zinc and chromium, also interact with various anabolic hormones, such as testosterone, growth hormone and insulin.
It has also been noted that supplementing creatine (which reduces internal synthesis of creatine and methylation requirements) preserved folate and tetrahydrofolate status (42% and 23%),[312] which acted to preserve methyl groups for other processes. Despite this effect, global DNA methylation decreases by 22% (assessed by the 5-methylcytosine/cytosine ratio) following creatine supplementation, which is usually seen as an anti-cancer effect in developed mammals.[461] This study was unable to demonstrate why this reduction occured[461] and opposing effects have been noted in females with Rett syndrome supplementing 200mg/kg creatine for 1 year, during which global methylation increased, secondary to preserving other methyl donors.[462]

Early infancy androgen effects are the least understood. In the first weeks of life for male infants, testosterone levels rise. The levels remain in a pubertal range for a few months, but usually reach the barely detectable levels of childhood by 4–7 months of age.[15][16] The function of this rise in humans is unknown. It has been theorized that brain masculinization is occurring since no significant changes have been identified in other parts of the body.[17] The male brain is masculinized by the aromatization of testosterone into estrogen, which crosses the blood–brain barrier and enters the male brain, whereas female fetuses have α-fetoprotein, which binds the estrogen so that female brains are not affected.[18]
There are several different available forms of creatine: creatine anhydrous which is creatine with the water molecule removed in order to increase the concentration of creatine to a greater amount than that found in CM. Creatine has been manufactured in salt form: creatine pyruvate, creatine citrate, creatine malate, creatine phosphate, magnesium creatine, creatine oroate, Kre Alkalyn (creatine with baking soda). Creatine can also be manufactured in an ester form. Creatine ethyl ester (hydrochloride) is an example of this, as is creatine gluconate which is creatine bound to glucose. Another form is creatine effervescent which is creatine citrate or CM with citric acid and bicarbonate. The citric acid and bicarbonate react to produce an effervescent effect. When mixed with water the creatine separates from its carrier leaving a neutrally charged creatine, allowing it to dissolve to a higher degree in water. Manufacturers claim that creatine effervescent has a longer and more stable life in solution. When di-creatine citrate effervescent was studied [59] for stability in solution it was found that the di-creatine citrate dissociates to citric acid and creatine in aqueous solutions which in turn forms CM and eventually crystallises out of the solution due to its low solubility. Some of the creatine may also convert to creatinine.
The important role of nutrition in building muscle and losing fat means bodybuilders may consume a wide variety of dietary supplements.[41] Various products are used in an attempt to augment muscle size, increase the rate of fat loss, improve joint health, increase natural testosterone production, enhance training performance and prevent potential nutrient deficiencies.
In regard to bioenergetics, phosphorylated cyclocreatine appears to have less affinity for the creatine kinase enzyme than phosphorylated creatine in terms of donating the high energy phosphate group (about 160-fold less affinity) despite the process of receiving phosphorylation being similar.[104][105] When fed to chickens, phosphorylated cyclocreatine can accumulate up to 60mM in skeletal muscle,[106] which suggests a sequestering of phosphate groups before equilibrium is reached.[105] Cyclocreatine still has the capacity to donate phosphate, however, as beta-adrenergic stimulated skeletal muscle (which depletes ATP and glycogen) exhibits an attenuation of glycogen depletion (indicative of preservation of ATP) with phosphocreatine.[102]

Without a doubt, you can add muscle simply by eating right and lifting weights. But to truly maximize your growth potential, supplements are a requirement. Hence, we've compiled a rundown of the 11 best mass-gain supplements on which to spend your hard-earned cash. They're listed in order of priority, from the absolute most critical, can't-do-without supplements to the less crucial yet still highly effective ingredients for packing on size. The point is to help those on a tight budget decide which supplements to buy. If money is no object, then by all means knock yourself out and use them all as directed. Because after all, as far as we're concerned, you can never have too much muscle.

In well-trained endurance runners, creatine (with glycerol for hyperhydration) caused a relatively large increase in body weight gain (0.90+/-0.40kg) and water weight (0.71+/-0.42L) but failed to negatively influence performance over 30 minutes in the heat.[3] This failure to improve physical performance in the heat with creatine loading (despite water retention) has been noted elsewhere.[346]
In people with COPD given either glucose placebo (40.7g) or creatine supplementation (5.7g creatine with 35g glucose) thrice daily for two weeks followed by a single dose for ten weeks, supplementation was associated with improvements in muscular strength and endurance, but not cardiovascular exercise potential.[579] A later trial of larger power using a loading phase of 22g creatine with a maintenance phase of 3.76g during rehabilitative exercise failed to replicate the improvements in skeletal muscle performance despite increased body weight seen with creatine,[580] and the failure to improve cardiovascular performance during aerobic exercise seen in both aforementioned studies has been replicated elsewhere after eight weeks supplementation, during which muscular performance was, again, unaffected.[581]
Creatine ingested through supplementation is transported into the cells exclusively by CreaT1. However, there is another creatine transporter Crea T2, which is primarily active and present in the testes [12]. Creatine uptake is regulated by various mechanisms, namely phosphorylation and glycosylation as well as extracellular and intracellular levels of creatine. Crea T1 has shown to be highly sensitive to the extracellular and intracellular levels being specifically activated when total creatine content inside the cell decreases [12]. It has also been observed that in addition to cytosolic creatine, the existence of a mitochondrial isoform of Crea T1 allows creatine to be transported into the mitochondria. Indicating another intra-mitochondrial pool of creatine, which seems to play an essential role in the phosphate-transport system from the mitochondria to the cytosol [13]. Myopathy patients have demonstrated reduced levels of total creatine and phosphocreatine as well as lower levels of CreaT1 protein, which is thought to be a major contributor to these decreased levels [14].
It is prudent to note that creatine supplementation has been shown to reduce the body’s endogenous production of creatine, however levels return to normal after a brief period of time when supplementation ceases [1,6]. Despite this creatine supplementation has not been studied/supplemented with for a relatively long period. Due to this, long term effects are unknown, therefore safety cannot be guaranteed. Whilst the long term effects of creatine supplementation remain unclear, no definitive certainty of either a negative or a positive effect upon the body has been determined for many health professionals and national agencies [19,78]. For example the French Sanitary Agency has banned the buying of creatine due to the unproven allegation that a potential effect of creatine supplementation could be that of mutagenicity and carcinogenicity from the production of heterocyclic amines [78]. Long term and epidemiological data should continue to be produced and collected to determine the safety of creatine in all healthy individuals under all conditions [78].
Multivitamin: A bodybuilder’s regime is strict and consuming the essential nutrients is an integral part of the process. The entire process can take a very nasty turn if one is not careful with the amount and type of food intake. The intake of multi vitamins can, therefore, have a good impact on a body builder. These multivitamins are used so that essential vitamins and minerals are supplied to the body, to promote good health and also allow a constant flow of energy.
I know this goes against the recommendations you often see in stereotypical bodybuilding routines (i.e. the ones that involve having a single “chest day” or “arm day” or “shoulder day” once a week), but that’s just one of the many reasons why those types of routines suck for us natural, genetically-average people, and work best for steroid users with great genetics. 

Supplementation of a loading phase of creatine has been noted to augment the increase in RBC levels of superoxide dismutase (SOD) from exercise, when measured immediately after, by 8.1%, but control groups increased to match within an hour.[299] Glutathione (normally decreases with exercise) and catalase (increases) were both unaffected,[299] and elsewhere in vitro red blood cells incubated with 3mM of creatine (within the supplemental range) is able to improve filterability (a measure of cell rheology, or fluid structure of the cell[300]) when RBC creatine was increased by 12.3% to reach 554µM.[301] This was thought to be due to reduced oxidative stress (assessed via MDA) in the red blood cells, which in the presence of 1-5mM creatine was progressively reduced by 20-41%.[301]
×