In regard to the loading period, two reviews suggest that the range of weight gain associated with creatine supplementation at 20g for 7 days is in the range of 0.9-1.8kg (1.98-3.96lbs).[612][613] The highest reported increase in water weight associated with creatine loading, although measured a month after loading started (after a maintenance phase) was 3.8kg (8.36lbs).[614]
Syrotuik and Bell [57] investigated the physical characteristics of responder and non-responder subjects to creatine supplementation in recreationally resistance trained men with no history of CM usage. The supplement group was asked to ingest a loading dosage of 0.3 g/kg/d for 5 days. The physiological characteristics of responders were classified using Greenhaff et al [58] criterion of >20 mmol/kg dry weight increase in total intramuscular creatine and phosphocreatine and non responders as <10 mmol/kg dry weight increase, a third group labeled quasi responders were also used to classify participants who fell in between the previously mentioned groups (10-20 mmol/kg dry weight). Overall, the supplemented group showed a mean increase in total resting muscle creatine and phosphocreatine of 14.5% (from 111.12 ± 8.87 mmol/kg dry weight to 127.30 ± 9.69 mmol/kg dry weight) whilst the placebo group remained relatively unaffected (from 115.70 ± 14.99 mmol/kg dry weight to 111.74 ± 12.95 mmol/kg dry weight). However when looking at individual cases from the creatine group the results showed a variance in response. From the 11 males in the supplemented group, 3 participants were responders (mean increase of 29.5 mmol/kg dry weight or 27%), 5 quasi responders (mean increase of 14.9 mmol/kg dry weight or 13.6%) and 3 non-responders (mean increase of 5.1 mmol/kg dry weight or 4.8%). Using muscle biopsies of the vastus lateralis, a descending trend for groups and mean percentage fiber type was observed. Responders showed the greatest percentage of type II fibers followed by quasi responders and non-responders. The responder and quasi responder groups had an initial larger cross sectional area for type I, type IIa and type IIx fibers. The responder group also had the greatest mean increase in the cross sectional area of all the muscle fiber types measured (type I, type IIa and type IIx increased 320, 971 and 840 μm2 respectively) and non-responders the least (type I, type IIa and type IIx increased 60, 46 and 78 μm2 respectively). There was evidence of a descending trend for responders to have the highest percentage of type II fibers; furthermore, responders and quasi responders possessed the largest initial cross sectional area of type I, IIa and IIx fibers. Responders were seen to have the lowest initial levels of creatine and phosphocreatine. This has also been observed in a previous study [17] which found that subjects whose creatine levels were around 150 mmol/Kg dry mass did not have any increments in their creatine saturation due to creatine supplementation, neither did they experience any increases of creatine uptake, phosphocreatine resynthesis and performance. This would indicate a limit maximum size of the creatine pool.
^ Jump up to: a b c d e Wilson JM, Fitschen PJ, Campbell B, Wilson GJ, Zanchi N, Taylor L, Wilborn C, Kalman DS, Stout JR, Hoffman JR, Ziegenfuss TN, Lopez HL, Kreider RB, Smith-Ryan AE, Antonio J (February 2013). "International Society of Sports Nutrition Position Stand: beta-hydroxy-beta-methylbutyrate (HMB)". J. Int. Soc. Sports. Nutr. 10 (1): 6. doi:10.1186/1550-2783-10-6. PMC 3568064. PMID 23374455.
The partial synthesis in the 1930s of abundant, potent testosterone esters permitted the characterization of the hormone's effects, so that Kochakian and Murlin (1936) were able to show that testosterone raised nitrogen retention (a mechanism central to anabolism) in the dog, after which Allan Kenyon's group[191] was able to demonstrate both anabolic and androgenic effects of testosterone propionate in eunuchoidal men, boys, and women. The period of the early 1930s to the 1950s has been called "The Golden Age of Steroid Chemistry",[192] and work during this period progressed quickly. Research in this golden age proved that this newly synthesized compound—testosterone—or rather family of compounds (for many derivatives were developed from 1940 to 1960), was a potent multiplier of muscle, strength, and well-being.[193]
COX-2, a pro-inflammatory enzyme, is sometimes a therapeutic target for both muscle soreness and some degenerative diseases that are exacerbated by inflammation. COX-2 inhibitors (in this study, rofecoxib) and creatine monohydrate both appear to protect dopaminergic neurons from being destroyed by toxins, and can protect in an additive manner, suggesting possible usage of both to reduce the risk of Parkinson’s disease.[230]

Many athletes follow a "loading" protocol of around 25 grams a day for five days, but this isn't essential. But as Ciaran Fairman notes in the article "Do I Need to Load With Creatine," you can also get the same benefits with around 5 grams a day, potentially with none of the mild side effects of the loading protocol, which include stomach pain and water weight gain. The catch is that you have to take it consistently. Don't skip it!

Liquid creatine has been shown to be less effective than creatine monohydrate.[69] This reduced effect is due to the passive breakdown of creatine over a period of days into creatinine, which occurs when it is suspended in solution.[70] This breakdown is not an issue for at-home use when creatine is added to shakes, but it is a concern from a manufacturing perspective in regard to shelf-life before use.
In standard dosages (5-10g creatine monohydrate) the bioavailability of creatine in humans is approximately 99%,[68][83] although this value is subject to change with different conjugates (forms) of creatine and dosages.[83] Coingestion of cyclocreatine (an analogue) can reduce uptake by about half[131] and coincubation of taurine, choline, glycine, or beta-alanine had minimal attenuation of absorption, which is likely not practically relevant.[131] The inhibition noted with cyclocreatine may be due to receptor saturation.
Despite creatine not interfering with UV(A) irradiation acting upon a cell or the production of oxidation due to it, creatine appears to prevent the functional consequences (such as mitochondrial DNA damage) due to preventing an ATP depletion in the cell, which would normally precede a reduction in mitochondrial membrane potential and mutagenesis, but this effect is prevented for as long as creatine stores are sufficient.[446] Creatine has also been noted to near-fully protect mitochondrial DNA from hydroxyl radicals and oxidative damage, although there was no protective effect for nuclear DNA, due to it being less sensitive to hydroxyl radicals.[447]
Creatine is a naturally occurring compound found in muscle in large amounts. Creatine monohydrate is the supplement form and combines is a combination of the amino acids arginine, glycine, and methionine. Creatine drives the important creatine phosphate energy pathway, which is important in high-intensity activity such as weightlifting. Creatine can improve body bulk and training performance in high-intensity activities. Be aware that not everyone responds to creatine supplementation and 30 percent of users may not see any improvement. Women may not benefit as much as men. In weight training, increased strength, bulk, and fat loss are reasonably consistent results.
^ Jump up to: a b Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM (January 1992). "Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the 'phosphocreatine circuit' for cellular energy homeostasis". The Biochemical Journal. 281 ( Pt 1) (Pt 1): 21–40. doi:10.1042/bj2810021. PMC 1130636. PMID 1731757.
"When placed around the tops of your shins as you move side to side, the miniband hits your hand-to-reach gluteus medius, a muscle that helps rotate your thigh inward and outward," says Nick Murtha, a trainer for Men's Health Thrive. Waking up this muscle allows you to use all your glute strength when performing moves like a heavy-loaded squat or lunge, he says.

When it comes to finding the right meal plan, you have to start somewhere. Start with writing down what you eat in a food diary, calculate the calories you’re consuming daily (ex: 3,000 without protein shakes), and break those up into six meals (ex: 500 calories each), says Heath. Then, choose a macronutrient ratio. For example, the 40% protein, 40% carbs, 20% fat ratio is what Heath used to get bigger when he first started bodybuilding. “Buy a food scale, learn how to use it, and you may even have to learn to use the metric system, like grams instead of ounces,” Heath says. “You need to train your body to process food quickly, so eat every three hours.”